1,860 research outputs found

    An rf Quantum Capacitance Parametric Amplifier

    Full text link
    We demonstrate a radio-frequency parametric amplifier that exploits the gate-tunable quantum capacitance of an ultra high mobility two dimensional electron gas (2DEG) in a GaAs heterostructure at cryogenic temperatures. The prototype narrowband amplifier exhibits a gain greater than 20 dB up to an input power of - 66 dBm (1 dB compression), and a noise temperature TN of 1.3 K at 370 MHz. In contrast to superconducting amplifiers, the quantum capacitance parametric amplifier (QCPA) is operable at tesla-scale magnetic fields and temperatures ranging from milli kelvin to a few kelvin. These attributes, together with its low power (microwatt) operation when compared to conventional transistor amplifiers, suggest the QCPA may find utility in enabling on-chip integrated readout circuits for semiconductor qubits or in the context of space transceivers and radio astronomy instruments

    125 - 211 GHz low noise MMIC amplifier design for radio astronomy

    Get PDF
    To achieve the low noise and wide bandwidth required for millimeter wavelength astronomy applications, superconductor-insulator-superconductor (SIS) mixer based receiver systems have typically been used. This paper investigates the performance of high electron mobility transistor (HEMT) based low noise amplifiers (LNAs) as an alternative approach for systems operating in the 125 — 211 GHz frequency range. A four-stage, common-source, unconditionally stable monolithic microwave integrated circuit (MMIC) design is presented using the state-of-the-art 35 nm indium phosphide HEMT process from Northrop Grumman Corporation. The simulated MMIC achieves noise temperature (T_e) lower than 58 K across the operational bandwidth, with average T_e of 38.8 K (corresponding to less than 5 times the quantum limit (hf/k) at 170 GHz) and forward transmission of 20.5 ± 0.85 dB. Input and output reflection coefficients are better than -6 and -12 dB, respectively, across the desired bandwidth. To the authors knowledge, no LNA currently operates across the entirety of this frequency range. Successful fabrication and implementation of this LNA would challenge the dominance SIS mixers have on sub-THz receivers

    SiGe HBT X-Band LNAs for Ultra-Low-Noise Cryogenic Receivers

    Get PDF
    We report results on the cryogenic operation of two different monolithic X-band silicon-germanium (SiGe) heterojunction bipolar transistor low noise amplifiers (LNAs) implemented in a commercially-available 130 nm SiGe BiCMOS platform. These SiGe LNAs exhibit a dramatic reduction in noise temperature with cooling, yielding Teff of less than 21 K (0.3 dB noise figure) across X-band at a 15 K operating temperature. To the authors’ knowledge, these SiGe LNAs exhibit the lowest broadband noise of any Si-based LNA reported to date

    Design of Active Waweguide OMT for Radio Astronomy Receiver Array in the 3 MM Band

    Get PDF
    We describe the design of an integrated cryogenic receiver module based on an “active” waveguide Orthomode Transducer (OMT) for dual-polarization radio astronomy observations across 75-116 GHz (3-mm band). The receiver module consists of passive and active sections that can be incorporated in a very compact mechanical assembly suitable for integration in a focal plane array. The passive section of the receiver module employs a broadband backward-coupler waveguide OMT while the active section consists of ultra-low noise MMIC (Monolithic Microwave Integrated Circuit) amplifiers

    Ultra-low-noise microwave amplifiers

    Get PDF
    The highlights of 20 years of maser use and development are presented. Masers discussed include cavity, traveling wave, K band, and S band. Noise temperatures measured since 1960 are summarized. Use of masers in the Deep Space Network is presented. Costs associated with the construction of masers systems are given

    An Experiment and Detection Scheme for Cavity-based Cold Dark Matter Searches

    Full text link
    A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated Tunnel Diode (TD) and a GaAs HEMT/HFET (High Electron Mobility Transistor/Heterogenous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior Signal-to-Noise Ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne readout. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.Comment: 22 pages, 7 figure

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    Design and performance of the ADMX SQUID-based microwave receiver

    Get PDF
    The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low expected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of 1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in Physics Research,
    corecore