441 research outputs found

    Solid State Generator for the Float Zone Process

    Get PDF

    Analysis and design of a 1 kW Class-GD ultrasonic generator

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 66-70)

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics

    Architecture for ultra-low power multi-channel transmitters for Body Area Networks using RF resonators

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-103).Body Area Networks (BANs) are gaining prominence for their use in medical and sports monitoring. This thesis develops the specifications of a ultra-low power 2.4GHz transmitter for use in a Body Area Networks, taking advantage of the asymmetric energy constraints on the sensor node and the basestation. The specifications include low transmit output powers, around -10dBm, low startup time, simple modulation schemes of OOK, FSK and BPSK and high datarates of 1Mbps. An architecture that is suited for the unique requirements of transmitters in these BANs is developed. RF Resonators, and in particular Film Bulk Acoustic Wave Resonators (FBARs) are explored as carrier frequency generators since they provide stable frequencies without the need for PLLs. The frequency of oscillation is directly modulated to generate FSK. Since these oscillators have low tuning range, the architecture uses multiple resonators to define the center frequencies of the multiple channels. A scalable scheme that uses a resonant buffer is developed to multiplex the oscillators' outputs to the Power Amplifier (PA). The buffer is also capable of generating BPSK signals. Finally a PA optimized for efficiently delivering the low output powers required in BANs is developed. A tunable matching network in the PA also enables pulse-shaping for spectrally efficient modulation. A prototype transmitter supporting 3 FBAR-oscillator channels in the 2.4GHz ISM band was designed in a 65nm CMOS process. It operates from a 0.7V supply for the RF portion and 1V for the digital section. The transmitter achieves 1Mbps FSK, up to 10Mbps for OOK and BPSK without pulse shaping and 1Mbps for OOK and BPSK with pulse shaping. The power amplifier has an efficiency of up to 43% and outputs between -15dBm and -7.5dBm onto a 50Q antenna. Overall, the transmitter achieves an efficiency of upto 26% and energy per bit of 483pJ/bit at 1Mbps.by Arun Paidimarri.S.M

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations

    The state-of-the-art of dc power distribution systems/components for space applications

    Get PDF
    This report is a survey of the state of the art of high voltage dc systems and components. This information can be used for consideration of an alternative secondary distribution (120 Vdc) system for the Space Station. All HVdc components have been prototyped or developed for terrestrial, aircraft, and spacecraft applications, and are applicable for general space application with appropriate modification and qualification. HVdc systems offer a safe, reliable, low mass, high efficiency and low EMI alternative for Space Station secondary distribution

    A Low-Power BFSK/OOK Transmitter for Wireless Sensors

    Get PDF
    In recent years, significant improvements in semiconductor technology have allowed consistent development of wireless chipsets in terms of functionality and form factor. This has opened up a broad range of applications for implantable wireless sensors and telemetry devices in multiple categories, such as military, industrial, and medical uses. The nature of these applications often requires the wireless sensors to be low-weight and energy-efficient to achieve long battery life. Among the various functions of these sensors, the communication block, used to transmit the gathered data, is typically the most power-hungry block. In typical wireless sensor networks, transmission range is below 10 meters and required radiated power is below 1 milliwatt. In such cases, power consumption of the frequency-synthesis circuits prior to the power amplifier of the transmitter becomes significant. Reducing this power consumption is currently the focus of various research endeavors. A popular method of achieving this goal is using a direct-modulation transmitter where the generated carrier is directly modulated with baseband data using simple modulation schemes. Among the different variations of direct-modulation transmitters, transmitters using unlocked digitally-controlled oscillators and transmitters with injection or resonator-locked oscillators are widely investigated because of their simple structure. These transmitters can achieve low-power and stable operation either with the help of recalibration or by sacrificing tuning capability. In contrast, phase-locked-loop-based (PLL) transmitters are less researched. The PLL uses a feedback loop to lock the carrier to a reference frequency with a programmable ratio and thus achieves good frequency stability and convenient tunability. This work focuses on PLL-based transmitters. The initial goal of this work is to reduce the power consumption of the oscillator and frequency divider, the two most power-consuming blocks in a PLL. Novel topologies for these two blocks are proposed which achieve ultra-low-power operation. Along with measured performance, mathematical analysis to derive rule-of-thumb design approaches are presented. Finally, the full transmitter is implemented using these blocks in a 130 nanometer CMOS process and is successfully tested for low-power operation

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field
    corecore