908 research outputs found

    An alternative approach for robot localization inside pipes using RF spatial fadings

    Get PDF
    Accurate robot localization represents a challenge inside pipes due to the particular conditions that characterize this type of environment. Outdoor techniques (GPS in particular) do not work at all inside metal pipes, while traditional indoor localization methods based on camera or laser sensors do not perform well mainly due to a lack of external illumination and distinctive features along pipes. Moreover, humidity and slippery surfaces make wheel odometry unreliable. In this paper, we estimate the localization of a robot along a pipe with an alternative Radio Frequency (RF) approach. We first analyze wireless propagation in metallic pipes and propose a series of setups that allow us to obtain periodic RF spatial fadings (a sort of standing wave periodic pattern), together with the influence of the antenna position and orientation over these fadings. Subsequently, we propose a discrete RF odometry-like method, by means of counting the fadings while traversing them. The transversal fading analysis (number of antennas and cross-section position) makes it possible to increase the resolution of this method. Lastly, the model of the signal is used in a continuous approach serving as an RF map. The proposed localization methods outperform our previous contributions in terms of resolution, accuracy, reliability and robustness. Experimental results demonstrate the effectiveness of the RF-based strategy without the need for a previously known map of the scenario or any substantial modification of the existing infrastructure

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Robot Localization in Tunnel-like Environments.

    Get PDF
    Los entornos confinados como tuberías, túneles o minas constituyen infraestructuras clave para el desarrollo de las economías de los diferentes países. La existencia de estas infraestructuras conlleva la necesidad de llevar a cabo una serie de tareas de mantenimiento mediante inspecciones regulares para asegurar la integridad estructural de las mismas. Así mismo, existen otras tareas que se tienen que realizar en estos entornos como pueden ser misiones de rescate en caso de accidentes e incluso las propias tareas derivadas de la construcción de los mismos. La duras condiciones de este tipo de entornos, ausencia de luz, polvo, presencia de fluidos e incluso de sustancias tóxicas, hace que la ejecución de las mismas suponga un trabajo tedioso e incluso peligroso para las personas. Todo esto, unido a los continuos avances en las tecnologías robóticas, hacen que los robots sean los dispositivos más adecuados para la realización de estas tareas.Para que un robot pueda desempeñar su cometido de manera autónoma, es fundamental que pueda localizarse de manera precisa, no sólo para poder decidir las acciones a llevar a cabo sino también para poder ubicar de manera inequívoca los posibles daños que se puedan detectar durante las labores de inspección. El problema de la localización ha sido ampliamente estudiado en el mundo de la robótica, existiendo multitud de soluciones tanto para interiores como para exteriores mediante el uso de diferentes sensores y tecnologías. Sin embargo, los entornos tipo túnel presentan una serie de características específicas que hacen que la tarea de localización se convierta en todo un reto. La ausencia de iluminación y de características distinguibles tanto visuales como estructurales, hacen que los métodos tradicionales de localización basados en sensores láser y cámaras no funcionen correctamente. Además, al tratarse de entornos confinados, no es posible utilizar sensores típicos de exteriores como es el caso del GPS. La presencia de fluidos e incluso de superficies irregulares hacen poco fiables los métodos basados en odometría utilizando encoders en las ruedas del robot.Por otra parte, estos entornos presentan un comportamiento peculiar en lo que a la propagación de la señal de radiofrecuencia se refiere. Por un lado, a determinadas frecuencias, se comportan como guías de onda extendiendo el alcance de la comunicación, pero por otro, la señal radio sufre fuertes desvanecimientos o fadings. Trabajos previos han demostrado que es posible obtener fadings periódicos bajo una configuración determinada.Partiendo de estos estudios, en esta tesis se aborda el problema de la localización en tuberías y túneles reaprovechando esta naturaleza periódica de la señal radio. Inicialmente, se propone un método de localización para tuberías metálicas basado en técnicas probabilísticas, utilizando el modelo de propagación de la señal como un mapa de radiofrecuencia. Posteriormente, se aborda la localización en túneles siguiendo una estrategia similar de reaprovechar la naturaleza periódica de la señal y se presenta un método de localización discreta. Yendo un paso más allá, y con el objetivo de mejorar la localización a lo largo del túnel incluyendo otras fuentes de información, se desarrolla un método inspirado en el paradigma del graph-SLAM donde se incorporan los resultados obtenidos de la detección de características discretas proporcionadas por el propio túnel.Para ello, se implementa un sistema de detección que proporciona la posición absoluta de características relevantes de la señal periódica radio. Del mismo modo, se desarrolla un método de detección de características estructurales del túnel (galerías) que devuelve la posición conocida de las mismas. Todos estos resultados se incorporan al grafo como fuentes de información.Los métodos de localización desarrollados a lo largo de la tesis han sido validados con datos recolectados durante experimentos llevados a cabo con plataformas robóticas en escenarios reales: la tubería de Santa Ana en Castillonroy y el túnel ferroviario de Somport.<br /

    Improving Omnidirectional Camera-Based Robot Localization Through Self-Supervised Learning

    Get PDF
    Autonomous agents in any environment require accurate and reliable position and motion estimation to complete their required tasks. Many different sensor modalities have been utilized for this task such as GPS, ultra-wide band, visual simultaneous localization and mapping (SLAM), and light detection and ranging (LiDAR) SLAM. Many of the traditional positioning systems do not take advantage of the recent advances in the machine learning field. In this work, an omnidirectional camera position estimation system relying primarily on a learned model is presented. The positioning system benefits from the wide field of view provided by an omnidirectional camera. Recent developments in the self-supervised learning field for generating useful features from unlabeled data are also assessed. A novel radial patch pretext task for omnidirectional images is presented in this work. The resulting implementation will be a robot localization and tracking algorithm that can be adapted to a variety of environments such as warehouses and college campuses. Further experiments with additional types of sensors including 3D LiDAR, 60 GHz wireless, and Ultra-Wideband localization systems utilizing machine learning are also explored. A fused learned localization model utilizing multiple sensor modalities is evaluated in comparison to individual sensor models

    A Convolutional Neural Network-Based Method for Discriminating Shadowed Targets in Frequency-Modulated Continuous-Wave Radar Systems

    Get PDF
    open4noThe radar shadow effect prevents reliable target discrimination when a target lies in the shadow region of another target. In this paper, we address this issue in the case of Frequency-Modulated Continuous-Wave (FMCW) radars, which are low-cost and small-sized devices with an increasing number of applications. We propose a novel method based on Convolutional Neural Networks that take as input the spectrograms obtained after a Short-Time Fourier Transform (STFT) analysis of the radar-received signal. The method discerns whether a target is or is not in the shadow region of another target. The proposed method achieves test accuracy of 92% with a standard deviation of 2.86%.openMohanna A.; Gianoglio C.; Rizik A.; Valle M.Mohanna, A.; Gianoglio, C.; Rizik, A.; Valle, M

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    Intelligent one-point damage localization of an isotropic surface pipeline using Guassian Process regression

    Get PDF
    Pipelines are subjected to many damaging agents, such as, earthquake, ground movement, and aging which are responsible for important financial expenses. Structural Health Monitoring (SHM) of civil structures using arrays of sensors is promising such that data form the monitoring systems enable us to trace the structural anomalies and performance for early treatments. The need for introducing faster and intelligent methods has helped researchers propose novel approaches for such monitoring procedures. In this study a new method is introduced for monitoring of surface pipelines used primarily for oil and gas. The framework takes the advantage of Gaussian Process Regression Method (GPRM) to create a probabilistic predictive model for damage detection and the subsequent localization of the defect. To this end, an isotropic pipeline is modeled numerically and validated with an experimental setup. Afterwards, the model is extended to the real-life application to establish a meta model. Damages are introduced as small holes at different locations (one at each time). The GPRM is used to map the system responses to the selected statistical features which are utilized as indicators for the existence of the damages and their locations. GPRM reveals more promising results compared with conventional regression analysis. It considers the uncertainties due to lack of observation. In addition, it is an updatable approach with having local effects on the model. In another words, it affects the model in the vicinity of new observations. Moreover, among selected statistical features, number of peaks greater than or equal to 20% and 60% of the maximum peak values show better results corresponding to damage localization. Also the curve length and correlation coefficient of the system response (induced signal) are found to be efficient for damage detection. The novel method has been validated with filed measurements and experimental data and found to work efficiently

    The Boston University Photonics Center annual report 2005-2006

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2005-2006 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This Annual Report is intended to serve as a synopsis of the Boston University Photonics Center’s wide-ranging activities for the period from July 2005 through June 2006, corresponding to the University’s fiscal year. It is my hope that the document is reflective of the Center’s core values in innovation, entrepreneurship, and education, and that it projects our shared vision, and our dedication to excellence in this exciting field. For further information, you may visit our new website at www.bu.edu/photonics. Though only recently appointed as Director, my involvement in Center activities dates back to the Center’s formation more than ten years ago. In the early years, I worked with a team of faculty and staff colleagues to design and construct the shared laboratories that now provide every Center member extraordinary capabilities for fabrication and testing of advanced photonic devices and systems. I helped launch the business incubator by forming a company around an idea that emerged from my research laboratory. While that company failed to realize its vision of transforming the compact disc industry, it did help us form a unique vision for our program of academically engaged business acceleration. I co-developed a course in optical microsystems for telecommunications that I taught to advanced undergraduates and graduate students in the new M.S. degree program in Photonics offered through the Electrical and Computer Engineering Department. And since the Center’s inception, I have contributed to its scholarly mission through my work in optical microsystem design and precision manufacturing at the Center’s core Precision Engineering Research Laboratory. Recently, I had the opportunity to lead the Provost’s Faculty Advisory Committee on Photonics, charged with broadening the Center’s mission to better integrate academic and educational programs with its more established programs for business incubation and prototype development. [TRUNCATED
    • …
    corecore