4,610 research outputs found

    Textile-based wearable sensors for assisting sports performance

    Get PDF
    There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external devices. This takes physiological monitoring into a more natural setting. By developing textile sensors the intelligence is integrated into a sports garment in an innocuous manner. A number of textile based sensors are presented here that have been integrated into garments for various sports applications

    Controversies in fluid therapy

    Get PDF

    Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu

    Get PDF
    (101955) Bennu is a dark asteroid on an Earth-crossing orbit, thought to have assembled from the fragments of an ancient collision. We use spatially-resolved visible and near-infrared spectra of Bennu to investigate its surface properties and composition. In addition to a hydrated phyllosilicate band, we detect a ubiquitous 3.4-micron absorption feature, which we attribute to a mix of organic and carbonate materials. The shape and depth of this absorption feature vary across Bennu’s surface, spanning the range seen among similar main-belt asteroids. Its distribution does not correlate with temperature, reflectance, spectral slope, or hydrated minerals, although some of those characteristics correlate with each other. The deepest 3.4-micron absorptions occur on individual boulders. The variations may be due to differences in abundance, recent exposure, or space weathering

    Astronomical Observations of Volatiles on Asteroids

    Full text link
    We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume.Comment: Chapter to appear in the (University of Arizona Press) Space Science Series Book: Asteroids I

    Non invasive skin hydration level detection using machine learning

    Get PDF
    Dehydration and overhydration can help to improve medical implications on health. Therefore, it is vital to track the hydration level (HL) specifically in children, the elderly and patients with underlying medical conditions such as diabetes. Most of the current approaches to estimate the hydration level are not sufficient and require more in-depth research. Therefore, in this paper, we used the non-invasive wearable sensor for collecting the skin conductance data and employed different machine learning algorithms based on feature engineering to predict the hydration level of the human body in different body postures. The comparative experimental results demonstrated that the random forest with an accuracy of 91.3% achieved better performance as compared to other machine learning algorithms to predict the hydration state of human body. This study paves a way for further investigation in non-invasive proactive skin hydration detection which can help in the diagnosis of serious health conditions

    AEVUM: Personalized Health Monitoring System

    Get PDF
    Advancement in the field of sensors and other portable technologies have resulted in a bevy of health monitoring devices such as blue-tooth and Wi-Fi enabled weighing scales and wearables which help individuals monitor their personal health. This collected information provides a plethora of data points over intervals of time that a primary care physician can utilize to gain a holistic understanding of an individual’s health and provide a more effective and personalized treatment. A drawback of the existing health monitoring devices is that they are not integrated with the professional medical infrastructure. With the wealth of information collected, it is also not feasible for a physician to look through all the data to obtain relevant information or patterns from multiple health monitoring systems. Therefore, it would be beneficial to have a single platform of hardware devices to monitor and collect data and a software application to securely store the collected information, identify patterns for analysis, and summarize the data for the physician and the patient. The aim of this study was to design and develop an unobtrusive, user friendly system, Aevum, which would integrate technology, adapt itself to changes in consumer behavior and integrate with the existing healthcare infrastructure to help an individual monitor their health in a customized manner. Aevum is a multi-device system consisting of a smart, puck-shaped hardware product, a wristband and a software application available to the patient as well as the physician. In addition to monitoring vitals such as heart rate, blood pressure, body temperature and weight, Aevum can monitor environmental factors that affect an individual’s health and uses personalized metrics such as precise calorie intake and medication management to monitor health. This allows the user to personalize Aevum based on their health condition. Finally, Aevum identifies patterns of anomalies in the collected data and compiles the information which can be accessed by the physician to assist in their treatment
    • 

    corecore