6 research outputs found

    Multi-source Remote Sensing for Forest Characterization and Monitoring

    Full text link
    As a dominant terrestrial ecosystem of the Earth, forest environments play profound roles in ecology, biodiversity, resource utilization, and management, which highlights the significance of forest characterization and monitoring. Some forest parameters can help track climate change and quantify the global carbon cycle and therefore attract growing attention from various research communities. Compared with traditional in-situ methods with expensive and time-consuming field works involved, airborne and spaceborne remote sensors collect cost-efficient and consistent observations at global or regional scales and have been proven to be an effective way for forest monitoring. With the looming paradigm shift toward data-intensive science and the development of remote sensors, remote sensing data with higher resolution and diversity have been the mainstream in data analysis and processing. However, significant heterogeneities in the multi-source remote sensing data largely restrain its forest applications urging the research community to come up with effective synergistic strategies. The work presented in this thesis contributes to the field by exploring the potential of the Synthetic Aperture Radar (SAR), SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), Polarimetric SAR Interferometry (PolInSAR), Light Detection and Ranging (LiDAR), and multispectral remote sensing in forest characterization and monitoring from three main aspects including forest height estimation, active fire detection, and burned area mapping. First, the forest height inversion is demonstrated using airborne L-band dual-baseline repeat-pass PolInSAR data based on modified versions of the Random Motion over Ground (RMoG) model, where the scattering attenuation and wind-derived random motion are described in conditions of homogeneous and heterogeneous volume layer, respectively. A boreal and a tropical forest test site are involved in the experiment to explore the flexibility of different models over different forest types and based on that, a leveraging strategy is proposed to boost the accuracy of forest height estimation. The accuracy of the model-based forest height inversion is limited by the discrepancy between the theoretical models and actual scenarios and exhibits a strong dependency on the system and scenario parameters. Hence, high vertical accuracy LiDAR samples are employed to assist the PolInSAR-based forest height estimation. This multi-source forest height estimation is reformulated as a pan-sharpening task aiming to generate forest heights with high spatial resolution and vertical accuracy based on the synergy of the sparse LiDAR-derived heights and the information embedded in the PolInSAR data. This process is realized by a specifically designed generative adversarial network (GAN) allowing high accuracy forest height estimation less limited by theoretical models and system parameters. Related experiments are carried out over a boreal and a tropical forest to validate the flexibility of the method. An automated active fire detection framework is proposed for the medium resolution multispectral remote sensing data. The basic part of this framework is a deep-learning-based semantic segmentation model specifically designed for active fire detection. A dataset is constructed with open-access Sentinel-2 imagery for the training and testing of the deep-learning model. The developed framework allows an automated Sentinel-2 data download, processing, and generation of the active fire detection results through time and location information provided by the user. Related performance is evaluated in terms of detection accuracy and processing efficiency. The last part of this thesis explored whether the coarse burned area products can be further improved through the synergy of multispectral, SAR, and InSAR features with higher spatial resolutions. A Siamese Self-Attention (SSA) classification is proposed for the multi-sensor burned area mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by different test sites, feature sources, and classification methods to assess the improvements achieved by the proposed method. All developed methods are validated with extensive processing of multi-source data acquired by Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Land, Vegetation, and Ice Sensor (LVIS), PolSARproSim+, Sentinel-1, and Sentinel-2. I hope these studies constitute a substantial contribution to the forest applications of multi-source remote sensing

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    corecore