6 research outputs found
UWSim, an underwater robotic simulator on the cloud as educational tool
[ES] La creciente demanda social de nuevas aplicaciones de la robótica, desde robots domésticos a coches autónomos, confirma la conveniencia de utilizar dicha tecnología como factor motivante en el contexto educacional. Así, el presente trabajo analiza cómo canalizar esta motivación hacia fines productivos, poniendo el énfasis en las posibilidades que ofrecen los simuladores de robots submarinos. En particular, se propone un entorno de aprendizaje en la nube con un simulador capaz de evaluar al alumno como eje central del sistema. Utilizando este tipo de herramientas tan solo es necesario un dispositivo capaz de acceder a Internet a través de un navegador para alcanzar una cantidad virtualmente ilimitada de recursos. Como caso de estudio, se detallan las mejoras implementadas, en una aplicación de seguimiento de tuberías submarinas, creando un entorno de comparación en la nube que permite a los alumnos competir por obtener el mejor resultado posible. Finalmente, es importante destacar que se aporta una primera experiencia de aplicación en un contexto de enseñanza real de la herramienta propuesta, demostrándose la viabilidad e idoneidad de la misma para el aprendizaje de robótica y ROS.[EN] Due to the introduction of robotic applications in the modern society, such as service robots or self-driving cars, it is possible to use this trend as motivating factor in the learning process of robotics. Several possibilities about how to use this motivation to increase learning rate are analysed, focusing on underwater robotic simulators. Moreover, a cloud learning environment able to evaluate the students with a robotic simulator is proposed as key element of the system. These kinds of tools can be used with just an Internet-capable system through a web browser, reaching a virtually unlimited amount of resources. The implemented features are used in a underwater pipe following application, creating a comparison environment on the cloud that immerse students in a competition to reach the best possible result. Finally, a first experience in a real educational environment using the proposed tool is detailed, demonstrating the viability and suitability of the proposed tool.Este trabajo ha sido parcialmente financiado por el Ministerio de Econom´ıa y competitividad, codigo de proyecto DPI2014-57746-C3 (proyecto MERBOTS), por la Generalitat Valenciana GVA, con el codigo de proyecto PROMETEO/2016/066 y por la Universidad Jaume I,proyecto MASUMIA, becas PREDOC/2012/47 y PREDOC/2013/46.Pérez, J.; Fornas, D.; Marín, R.; Sanz, PJ. (2017). UWSim, un simulador submarino conectado a la nube como herramienta educacional. Revista Iberoamericana de Automática e Informática industrial. 15(1):70-78. https://doi.org/10.4995/riai.2017.8827OJS7078151Bale, K., 2012. osgocean.Blasco, X., García-Nieto, S., Reynoso-Meza, G., 2012. Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. simulación y evaluación de propuestas. Revista Iberoamericana de Automática e Informática Industrial RIAI 9 (2), 194-199. https://doi.org/10.1016/j.riai.2012.01.001Center, U. D. C.-S., 2015. Roboblockly. URL: http://roboblockly.ucdavis.edu/Cerezo, F., Sastrón, F., 2015. Laboratorios virtuales y docencia de la automática en la formación tecnológica de base de alumnos preuniversitarios. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (4), 419-431. https://doi.org/10.1016/j.riai.2015.04.005Cervera, E., Martinet, P., Marin, R., Moughlbay, A. A., del Pobil, A. P., Alemany, J., Esteller, R., Casa˜n, G., 2016. The robot programming network. Journal of Intelligent & Robotic Systems 81 (1), 77-95. https://doi.org/10.1007/s10846-015-0201-7Cook, D., Vardy, A., Lewis, R., 2014. A survey of auv and robot simulators for multi-vehicle operations. En: 2014 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, pp. 1-8. https://doi.org/10.1109/AUV.2014.7054411Coumans, E., 2012. Bullet physics engine.Craighead, J., Murphy, R., Burke, J., Goldiez, B., 2007. A survey of commercial & open source unmanned vehicle simulators. En: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, pp. 852-857. https://doi.org/10.1109/ROBOT.2007.363092Eguchi, A., 2016. Robocupjunior for promoting stem education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems 75, 692-699. https://doi.org/10.1016/j.robot.2015.05.013Foundation, O. S. R., 2015. Cloudsim.García, J. C., Sanz, P. J., Cervera, E., 11/2011 2011. Using humanoids for teaching robotics and artificial intelligence issues. the uji case study. En: III Workshop de robótica: robótica experimental. Sevilla (Spain).Gómez-Estern, F., Ló0pez-Martínez, M., de la Pe-a, D. M., 2010. Sistema de evaluación automática víaweb en asignaturas prácticas de ingeniería. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 111- 119.Haynes, C., Edwards, J., 2015. First robotics competition [competitions]. Robotics & Automation Magazine, IEEE 22 (1), 8-10. https://doi.org/10.1109/MRA.2014.2385560Kalwa, J., Pascoal, A., Ridao, P., Birk, A., Eichhorn, M., Brignone, L., Caccia, M., Alvez, J., Santos, R., 2012. The european r&d-project morph: Marine robotic systems of self-organizing, logically linked physical nodes. IFAC Proceedings Volumes 45 (5), 349-354.Lane, D. M., Maurelli, F., Kormushev, P., Carreras, M., Fox, M., Kyriakopoulos, K., 2012. Persistent autonomy: the challenges of the pandora project. IFAC Proceedings Volumes 45 (27), 268-273. https://doi.org/10.3182/20120919-3-IT-2046.00046LLC, M. S., 2006. Rovsim.Matsebe, O., Kumile, C., Tlale, N., 2008. A review of virtual simulators for autonomous underwater vehicles (auvs). IFAC Proceedings Volumes 41 (1), 31-37.Osfield, R., Burns, D., et al., 2004. Open scene graph.Pavin, A., Inzartsev, A., Eliseenko, G., Lebedko, O., Panin, M., 2015. A reconfigurable web-based simulation environment for auv. En: OCEANS 2015- MTS/IEEE Washington. IEEE, pp. 1-7. https://doi.org/10.23919/OCEANS.2015.7404470Pérez, J., Sales, J., Marín, R., Cervera, E., Sanz, P. J., 09/2014 2014. Configuración y ejecución de benchmarks de intervención robótica submarina en uwsim mediante herramientas web. En: XX Jornadas de Automática 2014.Perez, J., Sales, J., Penalver, A., Fornas, D., Javier Fernandez, J., Garcia, J. C., Sanz, P. J., Marin, R., Prats, M., 2015. Exploring 3-d reconstruction techniques: A benchmarking tool for underwater robotics. Robotics & Automation Magazine, IEEE 22 (3), 85-95. https://doi.org/10.1109/MRA.2015.2448971Pérez, J., Sales, J., Prats, M., Martí, J. V., Fornas, D., Marín, R., Sanz, P. J., 2013. The underwater simulator uwsim-benchmarking capabilities on autonomous grasping. En: ICINCO (2). pp. 369-376.Prats, M., Pérez, J., Fernández, J., Sanz, P., 2012. An open source tool for simulation and supervision of underwater intervention missions. En: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. pp. 2577-2582. https://doi.org/10.1109/IROS.2012.6385788Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., 2009. Ros: an open-source robot operating system. En: ICRA workshop on open source software. Vol. 3. Kobe, p. 5.Tellez, R., 2017. A thousand robots for each student: Using cloud robot simulations to teach robotics. En: Robotics in Education. Springer, pp. 143-155. https://doi.org/10.1007/978-3-319-42975-5_1
Development of control algorithms for mobile robotics focused on their potential use for FPGA-based robots
This paper investigates the development and optimization of control
algorithms for mobile robotics, with a keen focus on their implementation in
Field-Programmable Gate Arrays (FPGAs). It delves into both classical control
approaches such as PID and modern techniques including deep learning,
addressing their application in sectors ranging from industrial automation to
medical care. The study highlights the practical challenges and advancements in
embedding these algorithms into FPGAs, which offer significant benefits for
mobile robotics due to their high-speed processing and parallel computation
capabilities. Through an analysis of various control strategies, the paper
showcases the improvements in robot performance, particularly in navigation and
obstacle avoidance. It emphasizes the critical role of FPGAs in enhancing the
efficiency and adaptability of control algorithms in dynamic environments.
Additionally, the research discusses the difficulties in benchmarking and
evaluating the performance of these algorithms in real-world applications,
suggesting a need for standardized evaluation criteria. The contribution of
this work lies in its comprehensive examination of control algorithms'
potential in FPGA-based mobile robotics, offering insights into future research
directions for improving robotic autonomy and operational efficiency.Comment: 10 pages, 1 figur
Review of control algorithms for mobile robotics
This article presents a comprehensive review of control algorithms used in
mobile robotics, a field in constant evolution. Mobile robotics has seen
significant advances in recent years, driven by the demand for applications in
various sectors, such as industrial automation, space exploration, and medical
care. The review focuses on control algorithms that address specific challenges
in navigation, localization, mapping, and path planning in changing and unknown
environments. Classical approaches, such as PID control and methods based on
classical control theory, as well as modern techniques, including deep learning
and model-based planning, are discussed in detail. In addition, practical
applications and remaining challenges in implementing these algorithms in
real-world mobile robots are highlighted. Ultimately, this review provides a
comprehensive overview of the diversity and complexity of control algorithms in
mobile robotics, helping researchers and practitioners to better understand the
options available to address specific problems in this exciting area of study.Comment: 8 pages, in Spanis
Performance criteria for evaluating mobile robot navigation algorithms: a review
[ES] En este artículo se presenta una revisión de literatura sobre criterios de desempeño para evaluar la navegación de un robot móvil, los cuales ayudan a comparar cuantitativamente diferentes características, como: el sistema de control, la navegación en diferentes entornos de trabajo, el desempeño energético, etc. El interés en criterios de desempeño y procedimiento de comparación (benchmarks) ha crecido en los últimos años, principalmente por investigadores y fabricantes de robots que buscan satisfacer la creciente demanda de aplicaciones en el mercado global, cada vez más competido. El conjunto de criterios está compuesto por métricas, índices, mediciones y benchmarks, desde el más básico como contabilizar el éxito en alcanzar la meta, pasando por otros más elaborados como los de seguridad en la trayectoria generada en la evasión de obstáculos, hasta criterios que comparan aspectos más complejos de la navegación como el consumo energético. Finalmente, se describen algunos benchmarks y software para simulación y comparación de algoritmos de navegación. Estos criterios se constituyen en una importante herramienta para diseñadores e investigadores en robótica móvil.[EN] This paper presents a literature review on performance criteria to evaluate the navigation of a mobile robot, which help to quantitatively compare different characteristics such as the control system, navigation in different work environments, energy performance, etc. The Interest in performance criteria and benchmarks has grown in recent years, mainly by researchers and robot manufacturers seeking to meet the growing demand for applications in the increasingly competitive global market. The set of criteria is made up of metrics, indexes, measurements, and benchmarks, from the most basic such as counting the success in reaching the goal, and others more elaborate such as security on the trajectory generated avoiding obstacles, to criteria that compare complex aspects of navigation such as energy consumption. Finally, some benchmarks and software for simulation and comparison of navigation algorithms are described. These criteria are an important tool for designers and researchers in mobile robotics.Los autores agradecen al Politécnico Colombiano Jaime Isaza Cadavid y la Universidad Nacional de Colombia sede Medellín por el apoyo recibido.Munoz-Ceballos, ND.; Suarez-Rivera, G. (2022). Criterios de desempeño para evaluar algoritmos de navegación de robots móviles: una revisión. Revista Iberoamericana de Automática e Informática industrial. 19(2):132-143. https://doi.org/10.4995/riai.2022.16427OJS13214319
