2,207 research outputs found

    Mathematical modeling of ultra wideband in vivo radio channel

    Get PDF
    This paper proposes a novel mathematical model for an in vivo radio channel at ultra-wideband frequencies (3.1–10.6 GHz), which can be used as a reference model for in vivo channel response without performing intensive experiments or simulations. The statistics of error prediction between experimental and proposed model is RMSE = 5.29, which show the high accuracy of the proposed model. Also, the proposed model was applied to the blind data, and the statistics of error prediction is RMSE = 7.76, which also shows a reasonable accuracy of the model. This model will save the time and cost on simulations and experiments, and will help in designing an accurate link budget calculation for a future enhanced system for ultra-wideband body-centric wireless systems

    Performance of ultrawideband wireless tags for on-body radio channel characterisation

    Get PDF
    Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper. The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition, path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho
    • …
    corecore