927 research outputs found

    An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters

    Get PDF
    A novel localization framework is presented based on ultra-wideband (UWB) channel sounding, employing a triangulation method using the geometrical properties of propagation paths, such as time delay of arrival, angle of departure, angle of arrival, and their estimated variances. In order to extract these parameters from the UWB sounding data, an extension to the high-resolution RiMAX algorithm was developed, facilitating the analysis of these frequency-dependent multipath parameters. This framework was then tested by performing indoor measurements with a vector network analyzer and virtual antenna arrays. The estimated means and variances of these geometrical parameters were utilized to generate multiple sample sets of input values for our localization framework. Next to that, we consider the existence of multiple possible target locations, which were subsequently clustered using a Kim-Parks algorithm, resulting in a more robust estimation of each target node. Measurements reveal that our newly proposed technique achieves an average accuracy of 0.26, 0.28, and 0.90 m in line-of-sight (LoS), obstructed-LoS, and non-LoS scenarios, respectively, and this with only one single beacon node. Moreover, utilizing the estimated variances of the multipath parameters proved to enhance the location estimation significantly compared to only utilizing their estimated mean values

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Distributed Cooperative Localization in Wireless Sensor Networks without NLOS Identification

    Full text link
    In this paper, a 2-stage robust distributed algorithm is proposed for cooperative sensor network localization using time of arrival (TOA) data without identification of non-line of sight (NLOS) links. In the first stage, to overcome the effect of outliers, a convex relaxation of the Huber loss function is applied so that by using iterative optimization techniques, good estimates of the true sensor locations can be obtained. In the second stage, the original (non-relaxed) Huber cost function is further optimized to obtain refined location estimates based on those obtained in the first stage. In both stages, a simple gradient descent technique is used to carry out the optimization. Through simulations and real data analysis, it is shown that the proposed convex relaxation generally achieves a lower root mean squared error (RMSE) compared to other convex relaxation techniques in the literature. Also by doing the second stage, the position estimates are improved and we can achieve an RMSE close to that of the other distributed algorithms which know \textit{a priori} which links are in NLOS.Comment: Accepted in WPNC 201

    Multi-Channel Two-way Time of Flight Sensor Network Ranging

    Get PDF
    Two-way time of flight (ToF) ranging is one of the most interesting approaches for localization in wireless sensor networking since previous ToF ranging approaches using commercial off-the-shelf (COTS) devices have achieved good accuracy. The COTS-based approaches were, however, evaluated only in line-of-sight conditions. In this paper, we extend ToF ranging using multiple IEEE 802.15.4 channels. Our results demonstrate that with multiple channels we can achieve good accuracy even in non line-of-sight conditions. Furthermore, our measurements suggest that the variance between different channels serves as a good estimate of the accuracy of the measurements, which can be valuable information for applications that require localization information

    Machine Learning for Improved Ultra-wideband Localization

    Get PDF

    Feature-Based Generalized Gaussian Distribution Method for NLoS Detection in Ultra-Wideband (UWB) Indoor Positioning System

    Get PDF
    Nonline-of-sight (NLoS) propagation condition is a crucial factor affecting the precision of the localization in the ultra-wideband (UWB) indoor positioning system (IPS). Numerous supervised machine learning (ML) approaches have been applied for the NLoS identification to improve the accuracy of the IPS. However, it is difficult for existing ML approaches to maintain a high classification accuracy when the database contains a small number of NLoS signals and a large number of line-of-sight (LoS) signals. The inaccurate localization of the target node caused by this small number of NLoS signals can still be problematic. To solve this issue, we propose feature-based Gaussian distribution (GD) and generalized GD (GGD) NLoS detection algorithms. By employing our detection algorithm for the imbalanced dataset, a classification accuracy of 96.7% and 98.0% can be achieved. We also compared the proposed algorithm with the existing cutting edge, such as support vector machine (SVM), decision tree (DT), naive Bayes (NB), and neural network (NN), which can achieve an accuracy of 92.6%, 92.8%, 93.2%, and 95.5%, respectively. The results demonstrate that the GGD algorithm can achieve high classification accuracy with the imbalanced dataset. Finally, the proposed algorithm can also achieve a higher classification accuracy for different ratios of LoS and NLoS signals, which proves the robustness and effectiveness of the proposed method
    corecore