149 research outputs found

    UWB Indoor Radio Propagation Modelling in Presence of Human Body Shadowing Using Ray Tracing Technique

    Get PDF
    This paper presents a ray-tracing method for modelingUltra Wide Bandwidth indoor propagation channels. Avalidation of the ray tracing model with our indoor measurementis also presented. Based on the validated model, the multipathchannel parameter like the fading statistics and root mean squarerms delay spread for Ultra Wide bandwidth frequencies aresimply extracted. The proposed ray-tracing method is basedon image method. This is used to predict the propagation ofUWB electromagnetic waves. First, we have obtained that thefading statistics can be well fitted by log normal distributionin static case. Second, as in realistic environment we cannotneglect the significant impact of Human Body Shadowing andother objects in motion on indoor UWB propagation channel.Hence, our proposed model allows a simulation of propagationin a dynamic indoor environment. Results of the simulation showthat this tool gives results in agreement with those reported inthe literature. Specially, the effects of people motion on temporalchannel properties. Other features of this approach also areoutlined

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Modeling of Time-of-arrival for CM4 Body Area Networks Channel

    Get PDF
    In Time-of-Arrival (TOA) based indoor human tracking system, the human body mounted with the target sensor can cause non-line-of-sight (NLOS) scenario and result in significant ranging error. In this thesis, we measured the TOA ranging error in a typical indoor environment and analyzed sources of inaccuracy in TOAbased indoor localization system. To quantitatively describe the TOA ranging error caused by human body, we introduce a statistical TOA ranging error model for body mounted sensors based on the measurement results. This model separates the ranging error into multipath error and NLOS error caused by the on-body creeping wave phenomenon. Both multipath error and NLOS error are modeled as a Gaussian variable. The distribution of multipath error is only relative to the bandwidth of the system while the distribution of NLOS error is relative to the angle between human facing direction and the direction of Transmitter-Receiver, signal to noise ratio (SNR) and bandwidth of the system, which clearly shows the effects of human body on TOA ranging. An efficient way to fight against the TOA ranging error caused by human body is to employ site-specific channel models by using ray-tracing technology. However, existing ray-tracing softwares lack the propagation model that takes the effects of human body into account. To address that issue, this thesis presents a empirical model for near human body ultra-wideband (UWB) propagation channel that is valid for the frequency range from 3GHz to 8GHz. It is based on measurements conducted in a anechoic chamber which can be regarded as free space. The empirical model shows the joint propagation characteristics of the on body channel and the channel between body surface and external access point. It includes the loss of the first path, arrival time of the first path and the total pathloss. Models for all three aspects have been partitioned into two sections by a break point due to the geometrical property of human body and the creeping wave phenomenon. The investigation on first path behavior can be regarded as a theoretical basis of raytracing technique that takes the effects of human body into consideration

    Indoor positioning model based on people effect and ray tracing propagation

    Get PDF
    WLAN-fingerprinting has been highlighted as the preferred technology in an Indoor Positioning System (IPS) due to its accurate positioning results and minimal infrastructure cost. However, the accuracy of IPS fingerprinting is highly influenced by the fluctuation in signal strength as a result of encountering obstacles. Many researchers have modelled static obstacles such as walls and ceilings, but hardly any have modelled the effect of people presence as an obstacle although the human body significantly impacts signal strength. Hence, the people presence effect must be considered to obtain highly accurate positioning results. Previous research proposed a model that only considered the direct path between the transmitter and the receiver. However, for indoor propagation, multipath effects such as reflection can also have a significant influence, but were not considered in past work. Therefore, this research proposes an accurate indoor positioning model that considers people presence using a ray tracing (AIRY) model in a dynamic environment which relies on existing infrastructure. Three solutions were proposed to construct AIRY: an automatic radio map using ray tracing (ARM-RT), a new human model in ray tracing (HUMORY), and a people effect constant for received signal strength indicator (RSSI) adaptation. At the offline stage, 30 RSSIs were recorded at each point using a smartphone to create a radio map database (523 points). The real-time RSSI was then compared to the radio map database at the online stage using MATLAB software to determine the user position (65 test points). The proposed model was tested at Level 3 of Razak Tower, UTM Kuala Lumpur (80 Ă— 16 m). To test the influence of people presence, the number, position, and distance of the people around the mobile device (MD) were varied. The results showed that the closer the people were to the MD in both the Line of Sight (LOS) and Non-LOS position, the greater the decrease in RSSI, in which the increment number of people will increase the amount of reflection signals to be blocked. The signal strength reduction started from 0.5 dBm with two people and reached 0.9 dBm with seven people. In addition, the ray tracing model produced smaller errors on RSSI prediction than the multi-wall model when considering the effect of people presence. The k-nearest neighbour (KNN) algorithm was used to define the position. The initial accuracy was improved from 2.04 m to 0.57 m after people presence and multipath effects were considered. In conclusion, the proposed model successfully increased indoor positioning accuracy in a dynamic environment by overcoming the people presence effect

    Measurement-Based Modeling of Wireless Propagation Channels - MIMO and UWB

    Get PDF
    Future wireless systems envision higher speeds and more reliable services but at the same time face challenges in terms of bandwidth being a limited resource. Two promising techniques that can provide an increased throughput without requiring additional bandwidth allocation are multiple-input multiple-output (MIMO) systems and ultra-wideband (UWB) systems. However, the performance of such systems is highly dependent on the properties of the wireless propagation channel, and an understanding of the channel is therefore crucial in the design of future wireless systems. Examples of such systems covered by this thesis are wireless personal area networks (papers I and II), vehicle-to-vehicle communications (paper III), board-to-board communications inside computers (paper IV) and sensor networks for industrial applications (paper V). Typically, channel models are used to evaluate the performance of different transmission and reception schemes. Channel modeling is the focus of this thesis, which contains a collection of papers that analyze and model the behavior of MIMO and UWB propagation channels. Paper I investigates the fading characteristics of wireless personal area networks (PANs), networks that typically involve human influence close to the antenna terminals. Based on extensive channel measurements using irregular antenna arrays, typical properties of PAN propagation channels are discussed and a model for the complete fading of a single link is presented. Paper II extends the model from paper I to a complete MIMO channel model. The paper combines the classical LOS model for MIMO with results from paper I by prescribing different fading statistics and mean power at the different antenna elements. The model is verified against measurement data and the paper also provides a parameterization for an example of a PAN scenario. Paper III presents a geometry-based stochastic MIMO model for vehicle-to-vehicle communications. The most important propagation effects are discussed based on the results from extensive channel measurements, and the modeling approach is motivated by the non-stationary behavior of such channels. The model distinguishes between diffuse contributions and those stemming from interaction with significant objects in the propagation channel, and the observed fading characteristics of the latter are stochastically accounted for in the model. Paper IV gives a characterization of UWB propagation channels inside desktop computer chassis. By studying measurement results from two different computers, it is concluded that the propagation channel only shows minor differences for different computers and positions within the chassis. It is also found out that the interference power produced by the computer is limited to certain subbands, suggesting that multiband UWB systems are more suitable for this type of applications. Paper V describes a UWB channel model based on the first UWB measurements in an industrial environment. Analyzing results from two different factory halls, it is concluded that energy arrives at the receiver in clusters, which motivates the use of a classical multi-cluster model to describe the channel impulse response. Parts of the results from this paper were also used as input to the channel model in the IEEE 802.15.4a UWB standardization work. In summary, the work within this thesis leads to an increased understanding of the behavior of wireless propagation channels for MIMO and UWB systems. By providing three detailed simulation models, two for MIMO and one for UWB, it can thus contribute to a more efficient design of the wireless communications systems of tomorrow

    Reliable high-data rate body-centric wireless communication

    Get PDF
    • …
    corecore