1,583 research outputs found

    Improved energy detector for random signals in Gaussian noise

    Get PDF
    New and improved energy detector for random signals in Gaussian noise is proposed by replacing the squaring operation of the signal amplitude in the conventional energy detector with an arbitrary positive power operation. Numerical results show that the best power operation depends on the probability of false alarm, the probability of detection, the average signal-to-noise ratio or the sample size. By choosing the optimum power operation according to different system settings, new energy detectors with better detection performances can be derived. These results give useful guidance on how to improve the performances of current wireless systems using the energy detector. It also confirms that the conventional energy detector based on the generalized likelihood ratio test using the generalized likelihood function is not optimum in terms of the detection performance

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Energy-Efficient Power Control in Impulse Radio UWB Wireless Networks

    Full text link
    In this paper, a game-theoretic model for studying power control for wireless data networks in frequency-selective multipath environments is analyzed. The uplink of an impulse-radio ultrawideband system is considered. The effects of self-interference and multiple-access interference on the performance of generic Rake receivers are investigated for synchronous systems. Focusing on energy efficiency, a noncooperative game is proposed in which users in the network are allowed to choose their transmit powers to maximize their own utilities, and the Nash equilibrium for the proposed game is derived. It is shown that, due to the frequency selective multipath, the noncooperative solution is achieved at different signal-to-interference-plus-noise ratios, depending on the channel realization and the type of Rake receiver employed. A large-system analysis is performed to derive explicit expressions for the achieved utilities. The Pareto-optimal (cooperative) solution is also discussed and compared with the noncooperative approach.Comment: Submitted to the IEEE Journal on Selected Topics in Signal Processing - Special issue on Performance Limits of Ultra-Wideband System

    Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

    Get PDF
    Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation. This work has the main goal of comparing the performance of TR-based systems with traditional non-prefiltered schemes, in the novel context of a distributed and uncoordinated IR-UWB network, under more realistic assumptions including the presence of ISI/IFI and multipath dispersion. Results show that, lack of power control and imperfect channel knowledge affect the performance of both non-prefiltered and TR systems; in these conditions, TR prefiltering still guarantees a performance improvement in sparse/low-loaded and overloaded network scenarios, while the opposite is true for less extreme scenarios, calling for the developement of an adaptive scheme that enables/disables TR prefiltering depending on network conditions

    An enhanced pulse position modulation (PPM) in ultra-wideband (UWB) systems

    Get PDF
    Simplicity, transmission rate, and bit error rate (BER) performance are three major concerns for ultra-wideband (UWB) systems. The main advantage of existing pulse-position modulation (PPM) schemes is simplicity, but their BER performance is poorer than that of an on-off-keying (OOK) modulation scheme, and their transmission rate is lower than that of an OOK scheme. In this research project, I will explore a novel PPM scheme, which can maintain the simplicity of the PPM schemes as well as achieve a BER performance and a transmission rate similar to the OOK scheme. During the research, I will thoroughly investigate the relationship between pulse position allocation and the BER performance and the transmission rate of UWB systems through computer simulations and theoretical analysis, and develop a whole set of design rules for the novel PPM scheme

    Code-Multiplexing-Based One-Way Detect-and-Forward Relaying Schemes for Multiuser UWB MIMO Systems

    Get PDF
    In this paper, we consider decode-and-forward (DF) one-way relaying schemes for multiuser impulse-radio ultrawideband (UWB) communications. We assume low-complexity terminals with limited processing capabilities and a central transceiver unit (i.e., the relay) with a higher computational capacity. All nodes have a single antenna differently from the relay in which multiple antennas may be installed. In order to keep the complexity as low as possible, we concentrate on noncoherent transceiver architectures based on multiuser code-multiplexing transmitted-reference schemes. We propose various relaying systems with different computational complexity and different levels of required channel knowledge. The proposed schemes largely outperform systems without relay in terms of both bit error rate (BER) performance and coverage

    On the Effects of Estimation Error and Jitter in Ultra-Wideband Communication

    Get PDF
    The opening of the 3.6 - 10.1 GHz frequency spectrum below the \u27noise-floor\u27 by the FCC in 2002 has made possible the prospect of reusing this frequency spectrum through ultra-wideband (UWB) communication. In this thesis, we compare the performance of several UWB systems in the presence of estimation error and jitter. We then develop two alternative decision schemes to combat the effect of jitter in the UWB system. Numerical results show that one of the schemes provides significantly better performance in the presence of severe jitter than maximal ratio combining and minimal degradation of performance if jitter is not present. A generalized maximal ratio combining decision scheme to combat the presence of estimation error is also proposed. It is shown that the generalized scheme outperforms traditional maximal ratio combining
    • 

    corecore