424 research outputs found

    Performance analysis of ultra wideband communication systems

    Get PDF
    Ultra Wideband (UWB) radio is one of the emerging technologies which have promising characteristics such as high data rate transmission, material penetration, multiple access capability and reduced fading. It has the potential to evolve as the future solution to high data rate short range wireless communication, and other applications including imaging and radar. This research aims to establish a comprehensive database, performance verification of the existing channel models, and a proposal of new channel models. This research contributes further to the channel characterization of the UWB channels and proposes a new model with enhanced statistical description using a large database of indoor and outdoor UWB measurements. The existing channel models are inadequate to study the delay characteristics of the UWB channel. The proposed model has new information regarding statistical descriptions of channel delay characteristics, including mean excess delay and root mean square (RMS) delay spread

    Performance analysis of ultra wide band indoor channel

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2008.Cataloged from PDF version of thesis report.Includes bibliographical references (page 41).Research on wireless communication system has been pursued for many years, but there is a renewed interest in ultra-wideband (UWB) technology for communication within short range, because of its huge bandwidth and low radiated power level. This emerging technology provides extremely high data rate in short ranges but in more secured approach. In order to build systems that realize all the potential of UWB, it is first required to understand UWB propagation and the channel properties arise from the propagation. In this research, the properties of UWB channel for indoor industrial environment was evaluated. A few indoor channel models have been studied so far for different environments but not for indoor industrial environment and various data rates are obtained according to wireless channel environments. Therefore, an accurate channel model is required to determine the maximum achievable data rate. In this thesis, we have proposed a channel model for indoor industrial environment considering the scattering coefficient along with the other multipath gain coefficient. This thesis addresses scattering effect while modeling UWB channel. Here, the performance of UWB channel model is analyzed following the parameters, such as power delay profile and the temporal dispersion properties which are also investigated in this paper.Kazi Afrina YasmeenA. K. M. WahiduzzamanMD. Ahamed ImtiazB. Computer Science and Engineerin

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    UWB channel measurements in an industrial environment

    Get PDF
    In this paper, we present the (to our knowledge) first measurement results for ultra-wideband channels in industrial environments, i.e., a factory hall. The measurements are done with virtual arrays, which allows analysis of the small-scale fading statistics, as well as a directional analysis. We find that there is dense multipath scattering due to the abundance of metallic scatterers in the considered environment. Multiple scatterer clusters can be identified both in the delay and the angular domain. Typical rms delay spreads lie between 30 ns for LOS scenarios and 40 ns for NLOS scenarios. For non-LOS scenarios at large distances, the maximum of the power delay profile is observed some 40 ns after the arrival of the first multipath components. We also draw conclusions about the behavior of typical UWB system designs in the measured channel

    Indoor Cooperative Localization for Ultra Wideband Wireless Sensor Networks

    Get PDF
    In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications. Localization information in these networks is an enabling technology and in some applications it is the main sought after parameter. The cooperative localization performance of WSNs is ultimately constrained by the behavior of the utilized ranging technology in dense cluttered indoor environments. Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited potential due to its large bandwidth and high time resolution. However, the performance of its ranging and cooperative localization capabilities in dense indoor multipath environments needs to be further investigated. Of main concern is the high probability of non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes, which biases the TOA estimation and degrades the localization performance. In this dissertation, we first present the results of measurement and modeling of UWB TOA-based ranging in different indoor multipath environments. We provide detailed characterization of the spatial behavior of ranging, where we focus on the statistics of the ranging error in the presence and absence of the DP and evaluate the pathloss behavior in the former case which is important for indoor geolocation coverage characterization. Parameters of the ranging error probability distributions and pathloss models are provided for different environments: traditional office, modern office, residential and manufacturing floor; and different ranging scenarios: indoor-to-indoor (ITI), outdoor-to-indoor (OTI) and roof-to-indoor (RTI). Based on the developed empirical models of UWB TOA-based OTI and ITI ranging, we derive and analyze cooperative localization bounds for WSNs in the different indoor multipath environments. First, we highlight the need for cooperative localization in indoor applications. Then we provide comprehensive analysis of the factors affecting localization accuracy such as network and ranging model parameters. Finally we introduce a novel distributed cooperative localization algorithm for indoor WSNs. The Cooperative LOcalization with Quality of estimation (CLOQ) algorithm integrates and disseminates the quality of the TOA ranging and position information in order to improve the localization performance for the entire WSN. The algorithm has the ability to reduce the effects of the cluttered indoor environments by identifying and mitigating the associated ranging errors. In addition the information regarding the integrity of the position estimate is further incorporated in the iterative distributed localization process which further reduces error escalation in the network. The simulation results of CLOQ algorithm are then compared against the derived G-CRLB, which shows substantial improvements in the localization performance

    Frequency UWB Channel

    Get PDF
    Ultra wideband (UWB) transmission systems are characterized with either a fractional bandwidth of more that 20%, or a large absolute bandwidth (>500 MHz) in the 3.1 GHz to 10.6 GHz band, and for a very low power spectral density (-41.25 dBm/MHz, equivalent to 75nW/MHz), which allows to share the spectrum with other narrowband and wideband systems without causing interference (FCC, 2002), this spectral allocation has initiated an extremely productive activity for industry and academia. Wireless communications experts now consider UWB as available spectrum to be utilized with a variety of techniques and not specifically related to the generation and detection of short RF pulses as in the past (Batra, 2004). For this reason, UWB systems are emerging as the best solution for high speed short range indoor wireless communication and sensor networks, with applications in home networking, high-quality multimedia content delivery, radars systems of high accuracy, etc. UWB has many attractive properties, including low interference to and from other wireless systems, easier wall and floor penetration, and inherent security due to its Low Probability Interception/Detection (LPI/D). Two of the most promising applications of UWB are High Data Rate Wireless Personal Area Network (HDR-WPAN), and Sensor Networks, where the good ranging and geo-location capabilities of UWB are particularly useful and of interest for military applications (Molisch, 2005)
    corecore