72 research outputs found

    Toxic Cyanobacteria in Water

    Get PDF

    Wastewater Treatment: Current and Future Techniques

    Get PDF
    This book examines the state-of-the-art water and wastewater treatment methods that can be applied to develop a sustainable treatment technique in the future. Of the several high-quality articles submitted, twelve were published after the peer-review process, with an acceptance rate of 59 percent. In the first section of this book, the articles include the occurrence and removal of emerging contaminants in water bodies. Moreover, the presence of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in water sources is discussed in detail. Subsequently, the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs), and dye with different physicochemical methods is investigated. In another section of this book, the removal of ammonia with anaerobic ammonium oxidation (anammox) is studied. Additionally, the elimination of heavy metals using the adsorption process, as an effective method, is discussed. Moreover, the performance of membrane bioreactors in the elimination of pollutants from landfill leachate is investigated in another article in this book. In addition to this, green and sustainable wastewater technologies (GSWTs) have recently attracted the attention of researchers. Therefore, nanoremediation and microalgae-based systems are discussed as the GSWTs

    Proceedings of the 29th International Symposium on Analytical and Environmental Problems

    Get PDF

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    Climate Change and the Health Sector

    Get PDF
    The health sector is known to be one of the major contributors towards the greenhouse gas emissions causing the climate crisis, the greatest health threat of the 21st century. This volume positions the health sector as a leader in the fight against climate change and explores the role of the health system in climate policy action. It delivers an overview of the linkages between climate change and the health sector, with chapters on the impact of climate change on health, its connection to pandemics, and its effects on food, nutrition and air quality, while examining gendered and other vulnerabilities. It delves into the different operational aspects of the health sector in India and details how each one can become climate-smart to reduce the health sector’s overall carbon footprint, by looking at sustainable procurement, green and resilient healthcare infrastructure, and the management of transportation, energy, water, waste, chemicals, pharmaceuticals and plastics in healthcare. Well supplemented with rigorous case studies, the book will be indispensable for students, teachers, and researchers of environmental studies, health sciences, and climate change. It will be useful for healthcare workers, public health officials, healthcare leaders, policy planners, and those interested in climate resilience and preparedness in the healthcare sector

    21st Century Nanostructured Materials

    Get PDF
    Nanostructured materials (NMs) are attracting interest as low-dimensional materials in the high-tech era of the 21st century. Recently, nanomaterials have experienced breakthroughs in synthesis and industrial and biomedical applications. This book presents recent achievements related to NMs such as graphene, carbon nanotubes, plasmonic materials, metal nanowires, metal oxides, nanoparticles, metamaterials, nanofibers, and nanocomposites, along with their physical and chemical aspects. Additionally, the book discusses the potential uses of these nanomaterials in photodetectors, transistors, quantum technology, chemical sensors, energy storage, silk fibroin, composites, drug delivery, tissue engineering, and sustainable agriculture and environmental applications

    Developing Energy Harvest Efficient Strategies with Microbial Fuel Cells

    Get PDF
    Nowadays, thinking of energetic efficiency is to determine how to decrease consumption and to reuse resources. This is a major concern when addressing hydric resources. The consumption of drinking water is seeing an unaffordable growth and, although most of it is replenished to the environment, the water quality is affected by pollutants and impurities. As such, using wastewater, a by-product of our routine and way of life, as resource is an asset. Even more when thinking about the heightened energy costs of a wastewater treatment station. The hypotheses of this work show how to achieve this goal by using microbial fuel cells. The organic composition of this water increases its energy production potential, where the bacterial metabolism can be used to, simultaneously, produce energy and help to clean the water. This document is divided in 5 chapters. The strategic positioning of the theme happens in chapter 1. Chapter 2 explains how the main elements of microbial fuel cell technology can work and determine its operation. In chapter 3, the power management systems used with microbial fuel cells are presented and discussed, with the identification of optimization strategies. The second-to-last chapter corresponds to the experimental results discussion and validation, while focusing improved energy production efficiencies. The outputs of this chapter pilot the future work analysis on chapter 5, together with the main conclusions and research trends. The validity and usefulness of this work is cleared with an application example.Pensar em economia energética é, hoje, considerar soluções para a redução de consumo e reutilização de recursos. Esta preocupação é importante ao examinar a utilização dos recursos hídricos. O consumo de água potável está a crescer insustentavelmente e, apesar de grande parte desse consumo ser restituído ao meio ambiente, a qualidade da água é afetada por poluentes ou impurezas. A utilização de água residual, um produto da nossa rotina e qualidade de vida, como um recurso é, por isso, uma mais valia. É ainda mais evidente ao considerar os elevados consumos energéticos de uma estação de tratamento de água residual. As hipóteses abordadas neste trabalho mostram como é possível atingir este objetivo usando células microbianas de combustível. A composição orgânica desta água faz com que o seu potencial energético possa ser explorado, usando o metabolismo bacteriano para produzir energia e, simultaneamente, auxiliar na limpeza da água. Este documento está dividido em 5 capítulos. O posicionamento do tema ocorre no capítulo 1. O capítulo 2 observa os principais elementos da tecnologia das células microbianas de combustível, permitindo compreender o seu funcionamento e conhecer que variáveis afetam o seu funcionamento. No capítulo 3 são apresentadas as tipologias de abordagem à gestão energética para esta pilha bacteriológica, discutindo-se as vantagens e otimizações de cada sistema. O penúltimo capítulo corresponde à exploração de resultados experimentais e à validação de hipóteses, orientadas para a maior eficiência energética. Surgem assim recomendações que servirão para guiar os trabalhos futuros, discutidos no capítulo final. Este, o capítulo 5, conta ainda com a apresentação das principais conclusões e das tendências de pesquisa. O trabalho termina com um exemplo de aplicação que solidifica a validade e utilidade da aplicação desta tecnologia
    corecore