70 research outputs found

    Kerberos based authentication for inter-domain roaming in wireless heterogeneous network

    Get PDF
    AbstractAn increased demand in ubiquitous high speed wireless access has led integration of different wireless technologies provided by different administrative domains creating truly a heterogeneous network. Security is one of the major hurdles in such network environment. As a mobile station moves in and out of the coverage area of one wireless network to another, it needs to be authenticated. The existing protocols for authentication of a mobile station are typically centralized, where the home network participates in each authentication process. It requires home network to maintain roaming agreement with all other visiting networks. Moreover, the round trip time to home network results high latency. This paper is focused on developing authentication protocol for wireless network irrespective of the technologies or the administrative domain. We propose a secure protocol which adopts strong features of Kerberos based on tickets for rigorous mutual authentication and session key establishment along with issuance of token so that the mobile station can have access to not only the roaming partner of home network but also to the roaming partner of previous visited networks. The performance evaluation and comparative analysis of the proposed protocol is carried out with the already implemented standard protocols and most remarkable research works till date to confirm the solidity of the results presented

    WI-FI ALLIANCE HOTSPOT 2.0 SPECIFICATION BASED NETWORK DISCOVERY, SELECTION, AUTHENTICATION, DEPLOYMENT AND FUNCTIONALITY TESTS.

    Get PDF
    The demand for high mobile data transmission has been dramatically enlarged since there is a significant increase at the number of mobile communication devices that capable of providing high data rates. It is clearly observed that even the next generation cellular networks are not able to respond to this demand to provide the required level of mobile data transmission capacity. Although, WLAN responses to this demand by providing upwards of 600 Mbps data rates it is not convenient in terms of cellular like mobility and requires user intervention anytime of reconnection to a hotspot. Therefore, the need for a new technology took place and IEEE has introduced a new amendment to IEEE 802.11 standards family which is called as IEEE 802.11u. Based on IEEE 802.11u amendment, WFA developed WFA Hotspot 2.0 Specification and started to certify the Wi-Fi devices under Passpoint certification program. This new technology developed to provide Wi-Fi capable devices simply identify, select and associate to a Hotspot without any user intervention in a highly secure manner. As Hotspot 2.0 Specification is quite new in the market it has been a challenging work to reach some academic papers; however, IEEE 802.11u standard, Internet sources, white papers published by different companies/organizations and discussions with telecommunication experts have made this master thesis to achieve its goals. This thesis work provides a great resource for the network operators to have a great understanding of the Hotspot 2.0 Specification in terms of theory, network element requirements and deployment by providing a good understanding of the system functionality. In this paper, a comprehensive theoretical background that addresses to WLAN technology, Passpoint elements, and IEEE 802.11u based network discovery, selection and authentication is provided. Besides, Hotspot 2.0 network deployment scenarios with network core element requirements are designed and Passpoint functionality tests are performed under different scenarios by describing a comprehensive setup for the testing.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Handling of Extensible Authentication Protocol Based Non-Access Stratum Authentication Failures

    Get PDF
    In a 5G System (5GS), the network initiates and controls the authentication method, meaning that the network determines whether the user equipment (UE) and the network use EAP-based NAS authentication or 5G AKA-based NAS authentication for the mutual authentication of the UE and the network. The specification for 5GS presumes that in a 5G standalone case, the UE supports both EAP-based NAS authentication and 5G AKA-based NAS authentication. However, not all wireless carriers have required support for EAP-based NAS authentication. As a result, many UEs manufactured do not support EAP-based NAS authentication. This publication describes techniques for preventing an authentication failure in 5GS when the network selects an authentication method (e.g., EAP-based NAS authentication) that the UE does not support

    Wireless Network Security and Interworking

    Full text link

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Autenticazione degli utenti in scenari WLAN-3G: valutazione delle caratteristiche e prestazioni di protocolli ed architetture.

    Get PDF
    Studio ed analisi dei protocolli di autenticazione per l'interworking delle reti 3G e WLAN. Dopo aver analizzato l'architettura di rete e i protocolli giĂ  standardizzati, vengono evidenziate lacune e difetti e i tentativi in letteratura per ovviare a questi inconvenienti. Viene anche proposto un possibile protocollo che supporti la maggior parte delle caratteristiche necessarie per un buon funzionamento

    Secure 3G user authentication in ad-hoc serving networks

    Get PDF
    The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. With 3G networks\u27 failure to deliver feasible bandwidth to the customer and the emerging popularity, ease of use and high throughput of 802.11 WLANs, integrating secure access to 3G services from WLANs has become a primary focus. 3G user authentication initiated from WLANs has been defined by an enhancement to the extensible authentication protocol, EAP, used to transport user authentication requests over WLANs. The EAP-AKA protocol executes the 3G USIM user challenge and response authentication process over the IP backbone for WLAN serving networks. To improve the degree of control of 3G subscribers, spatial control has been proposed for 3G-WLAN user authentication. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user\u27s authentication challenge with spatial data defining his/her visited WLAN. With 3G networks\u27 limited capacity to determine a user\u27s location to the granularity of a small WLAN area and restricted access to users\u27 location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement control for authentication. The risks of implementing EAP-AKA spatial control by 3G operators with no prior relationship or trust for serving WLAN networks are presented in this paper. An ad-hoc architecture is proposed for serving networks in 3G-WLAN integration and the advantages of this architecture that facilitate secure 3G user authentication are identified. Algorithms are proposed to define robust trust relationships between the parties in 3G-WLAN networks. The security of 3G user authentication is further protected by new mechanisms defined that are based on the quality of trust established between parties
    • …
    corecore