2,867 research outputs found

    Exploiting Power for Smartphone Security and Privacy

    Get PDF
    Power consumption has become a key issue for smartphone security and privacy protection. In this dissertation, we propose to exploit power for smartphone security, as well as to optimize energy consumption for smartphone privacy. First, we show that public USB charging stations pose a significant privacy risk to smartphone users. We present a side-channel attack that allows a charging station to identify which webpages are loaded while the smartphone is charging. to evaluate this side-channel, we collected power traces of Alexa top 50 websites on multiple smartphones under several conditions, including: varied battery charging level, browser cache enabled/disabled, taps/no taps on the screen, WiFi/LTE, TLS encryption enabled/disabled, different amounts of time elapsed between collection of training and testing data, and various hosting locations of the website being visited. The results of our evaluation show that the attack is highly successful: in many settings, we were able to achieve over 90% accuracy on webpage identification. On the other hand, our experiments also show that this side-channel is sensitive to some of the aforementioned conditions. Second, we introduce a new attack that allows a malicious charging station to identify which website is being visited by a smartphone user via Tor network. Our attack solely depends on power measurements performed while the user is charging her smartphone. We evaluated the attack by training a machine learning model on power traces from 50 regular webpages and 50 Tor hidden services. We considered realistic constraints such as different Tor circuits types and battery charging levels. We were able to correctly identify webpages visited using the official mobile Tor browser with accuracy of up to 85.7% when the battery was fully charged, and up to 46% when the battery level was between 30% and 50%. Our results show that hidden services can be identified with higher accuracies than regular webpages. Third, we propose a memory- and energy-efficient garbled circuit evaluation mechanism named MEG on smartphones. MEG utilizes batch data transmission and multi-threading to reduce memory and energy consumption. We implement MEG on android smartphones and compare its performance with existing methods (non-pipelined and pipelined). Two garbled circuits of different scales, AES encryption (AES-128) and Levenshtein distance (EDT-256), are considered. Our measurement results show that compared with non-pipelined method, MEG decreases the memory consumption by up to 97.5% for EDT-256 when batch size is 2 MB. Compared with pipelined method, MEG reduces the energy consumption by up to 42% for AES-128 and 23% for EDT-256. Multi-thread MEG also significantly decreases the circuit evaluation time by up to 56.7% for AES-128 and up to 13.5% for EDT-256

    Platform for Testing and Evaluation of PUF and TRNG Implementations in FPGAs

    Get PDF
    Implementation of cryptographic primitives like Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) depends significantly on the underlying hardware. Common evaluation boards offered by FPGA vendors are not suitable for a fair benchmarking, since they have different vendor dependent configuration and contain noisy switching power supplies. The proposed hardware platform is primary aimed at testing and evaluation of cryptographic primitives across different FPGA and ASIC families. The modular platform consists of a motherboard and exchangeable daughter board modules. These are designed to be as simple as possible to allow cheap and independent evaluation of cryptographic blocks and namely PUFs. The motherboard is based on the Microsemi SmartFusion 2 SoC FPGA. It features a low-noise power supply, which simplifies evaluation of vulnerability to the side channel attacks. It provides also means of communication between the PC and the daughter module. Available software tools can be easily customized, for example to collect data from the random number generator located in the daughter module and to read it via USB interface. The daughter module can be plugged into the motherboard or connected using an HDMI cable to be placed inside a Faraday cage or a temperature control chamber. The whole platform was designed and optimized to fullfil the European HECTOR project (H2020) requirements

    Detecting and Mitigating Denial-of-Service Attacks on Voice over IP Networks

    Get PDF
    Voice over IP (VoIP) is more susceptible to Denial of Service attacks than traditional data traffic, due to the former's low tolerance to delay and jitter. We describe the design of our VoIP Vulnerability Assessment Tool (VVAT) with which we demonstrate vulnerabilities to DoS attacks inherent in many of the popular VoIP applications available today. In our threat model we assume an adversary who is not a network administrator, nor has direct control of the channel and key VoIP elements. His aim is to degrade his victim's QoS without giving away his presence by making his attack look like a normal network degradation. Even black-boxed, applications like Skype that use proprietary protocols show poor performance under specially crafted DoS attacks to its media stream. Finally we show how securing Skype relays not only preserves many of its useful features such as seamless traversal of firewalls but also protects its users from DoS attacks such as recording of conversations and disruption of voice quality. We also present our experiences using virtualization to protect VoIP applications from 'insider attacks'. Our contribution is two fold we: 1) Outline a threat model for VoIP, incorporating our attack models in an open-source network simulator/emulator allowing VoIP vendors to check their software for vulnerabilities in a controlled environment before releasing it. 2) We present two promising approaches for protecting the confidentiality, availability and authentication of VoIP Services

    Experimental Long-Distance Decoy-State Quantum Key Distribution Based On Polarization Encoding

    Full text link
    We demonstrate the decoy-state quantum key distribution (QKD) with one-way quantum communication in polarization space over 102km. Further, we simplify the experimental setup and use only one detector to implement the one-way decoy-state QKD over 75km, with the advantage to overcome the security loopholes due to the efficiency mismatch of detectors. Our experimental implementation can really offer the unconditionally secure final keys. We use 3 different intensities of 0, 0.2 and 0.6 for the pulses of source in our experiment. In order to eliminate the influences of polarization mode dispersion in the long-distance single-mode optical fiber, an automatic polarization compensation system is utilized to implement the active compensation.Comment: 4 pages,3 figure

    PerfWeb: How to Violate Web Privacy with Hardware Performance Events

    Full text link
    The browser history reveals highly sensitive information about users, such as financial status, health conditions, or political views. Private browsing modes and anonymity networks are consequently important tools to preserve the privacy not only of regular users but in particular of whistleblowers and dissidents. Yet, in this work we show how a malicious application can infer opened websites from Google Chrome in Incognito mode and from Tor Browser by exploiting hardware performance events (HPEs). In particular, we analyze the browsers' microarchitectural footprint with the help of advanced Machine Learning techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines, and in contrast to previous literature also Convolutional Neural Networks. We profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing portals, on two machines featuring an Intel and an ARM processor. By monitoring retired instructions, cache accesses, and bus cycles for at most 5 seconds, we manage to classify the selected websites with a success rate of up to 86.3%. The results show that hardware performance events can clearly undermine the privacy of web users. We therefore propose mitigation strategies that impede our attacks and still allow legitimate use of HPEs

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Conscript Your Friends into Larger Anonymity Sets with JavaScript

    Full text link
    We present the design and prototype implementation of ConScript, a framework for using JavaScript to allow casual Web users to participate in an anonymous communication system. When a Web user visits a cooperative Web site, the site serves a JavaScript application that instructs the browser to create and submit "dummy" messages into the anonymity system. Users who want to send non-dummy messages through the anonymity system use a browser plug-in to replace these dummy messages with real messages. Creating such conscripted anonymity sets can increase the anonymity set size available to users of remailer, e-voting, and verifiable shuffle-style anonymity systems. We outline ConScript's architecture, we address a number of potential attacks against ConScript, and we discuss the ethical issues related to deploying such a system. Our implementation results demonstrate the practicality of ConScript: a workstation running our ConScript prototype JavaScript client generates a dummy message for a mix-net in 81 milliseconds and it generates a dummy message for a DoS-resistant DC-net in 156 milliseconds.Comment: An abbreviated version of this paper will appear at the WPES 2013 worksho

    Multiplexed Quantum Random Number Generation

    Get PDF
    Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.Comment: 10 pages, 3 figures and 1 tabl
    • …
    corecore