16,503 research outputs found

    XML views, part III: An UML based design methodology for XML views

    Get PDF
    Object-Oriented (OO) conceptual models have the power in describing and modelling real-world data semantics and their inter-relationships in a form that is precise and comprehensible to users. Today UML has established itself as the language of choice for modelling complex enterprises information systems (EIS) using OO techniques. Conversely, the eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various enterprises systems and databases. With the introduction of XML Schema, which provides rich facilities for constraining and defining XML content, XML provides the ideal platform and the flexibility for capturing and representing complex enterprise data formats. Yet, UML provides insufficient modelling constructs for utilising XML schema based data description and constraints, while XML Schema lacks the ability to provide higher levels of abstraction (such as conceptual models) that are easily understood by humans. Therefore to enable efficient business application development of large-scale enterprise systems, we need UML like models with rich XML schema like semantics. To address such issue, in this paper, we proposed a generic, semantically rich view mechanism to conceptually model and design (using UML) XML domains to support data modelling of complex domains such as data warehousing and e-commerce systems. Our approach is based on UML and UML stereotypes to design and transform XML views

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Abstract Platform and Transformations for Model-Driven Service-Oriented Development

    Get PDF
    In this paper, we discuss the use of abstract platforms and transformation for designing applications according to the principles of the service-oriented architecture. We illustrate our approach by discussing the use of the service discovery pattern at a platform-independent design level. We show how a trader service can be specified at a high-level of abstraction and incorporated in an abstract platform for service-oriented development. Designers can then build platform-independent models of applications by composing application parts with this abstract platform. Application parts can use the trader service to publish and discover service offers. We discuss how the abstract platform can be realized into two target platforms, namely Web Services (with UDDI) and CORBA (with the OMG trader)

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    UML to XML-Schema Transformation: a Case Study in Managing Alternative Model Transformations in MDA

    Get PDF
    In a Model Driven Architecture (MDA) software development process, models are\ud repeatedly transformed to other models in order to finally achieve a set of models with enough details to implement a system. Generally, there are multiple ways to transform one model into another model. Alternative target models differ in their quality properties and the selection of a particular model is determined on the basis of specific requirements. Software engineers must be able to identify, compare and select the appropriate transformations within the given set of requirements. The current transformation languages used for describing and executing model transformations only provide means to specify the transformations but do not help to identify and select from the alternative transformations. In this paper we propose a process and a set of techniques for constructing a transformation space for a given transformation problem. The process uses a source model, its meta-model and the meta-model of the target as input and generates a transformation space. Every element in that space represents a transformation that produces a result that is an instance of the target meta-model. The requirements that must be fulfilled by the result are captured and represented in a quality model. We explain our approach using an illustrative example for transforming a platform independent model expressed in UML into platform specific models that represent XML schemas. A particular quality model of extensibility is presented in the paper

    An open extensible tool environment for Event-B

    No full text
    Abstract. We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.

    Relevance, benefits, and problems of software modelling and model driven techniques—A survey in the Italian industry

    Get PDF
    Context Claimed benefits of software modelling and model driven techniques are improvements in productivity, portability, maintainability and interoperability. However, little effort has been devoted at collecting evidence to evaluate their actual relevance, benefits and usage complications. Goal The main goals of this paper are: (1) assess the diffusion and relevance of software modelling and MD techniques in the Italian industry, (2) understand the expected and achieved benefits, and (3) identify which problems limit/prevent their diffusion. Method We conducted an exploratory personal opinion survey with a sample of 155 Italian software professionals by means of a Web-based questionnaire on-line from February to April 2011. Results Software modelling and MD techniques are very relevant in the Italian industry. The adoption of simple modelling brings common benefits (better design support, documentation improvement, better maintenance, and higher software quality), while MD techniques make it easier to achieve: improved standardization, higher productivity, and platform independence. We identified problems, some hindering adoption (too much effort required and limited usefulness) others preventing it (lack of competencies and supporting tools). Conclusions The relevance represents an important objective motivation for researchers in this area. The relationship between techniques and attainable benefits represents an instrument for practitioners planning the adoption of such techniques. In addition the findings may provide hints for companies and universitie
    corecore