3,015 research outputs found

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Modelling Smart Card Security Protocols in SystemC TLM

    No full text
    Smart cards are an example of advanced chip technology. They allow information transfer between the card holder and the system over secure networks, but they contain sensitive data related to both the card holder and the system, that has to be kept private and confidential. The objective of this work is to create an executable model of a smart card system, including the security protocols and transactions, and to examine the strengths and determine the weaknesses by running tests on the model. The security objectives have to be considered during the early stages of systems development and design, an executable model will give the designer the advantage of exploring the vulnerabilities early, and therefore enhancing the system security. The Unified Modeling Language (UML) 2.0 is used to model the smart card security protocol. The executable model is programmed in SystemC with the Transaction Level Modeling (TLM) extensions. The final model was used to examine the effectiveness of a number of authentication mechanisms with different probabilities of failure. In addition, a number of probable attacks on the current security protocol were modeled to examine the vulnerabilities. The executable model shows that the smart card system security protocols and transactions need further improvement to withstand different types of security attacks

    Ensuring patients privacy in a cryptographic-based-electronic health records using bio-cryptography

    Get PDF
    Several recent works have proposed and implemented cryptography as a means to preserve privacy and security of patients health data. Nevertheless, the weakest point of electronic health record (EHR) systems that relied on these cryptographic schemes is key management. Thus, this paper presents the development of privacy and security system for cryptography-based-EHR by taking advantage of the uniqueness of fingerprint and iris characteristic features to secure cryptographic keys in a bio-cryptography framework. The results of the system evaluation showed significant improvements in terms of time efficiency of this approach to cryptographic-based-EHR. Both the fuzzy vault and fuzzy commitment demonstrated false acceptance rate (FAR) of 0%, which reduces the likelihood of imposters gaining successful access to the keys protecting patients protected health information. This result also justifies the feasibility of implementing fuzzy key binding scheme in real applications, especially fuzzy vault which demonstrated a better performance during key reconstruction

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    In my Wish List, an Automated Tool for Fail-Secure Design Analysis: an Alloy-Based Feasibility Draft

    Full text link
    A system is said to be fail-secure, sometimes confused with fail-safe, if it maintains its security requirements even in the event of some faults. Fail-secure analyses are required by some validation schemes, such as some Common Criteria or NATO certifications. However, it is an aspect of security which as been overlooked by the community. This paper attempts to shed some light on the fail-secure field of study by: giving a definition of fail-secure as used in those certification schemes, and emphasizing the differences with fail-safe; and exhibiting a first feasibility draft of a fail-secure design analysis tool based on the Alloy model checker.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Safe and Secure Support for Public Safety Networks

    Get PDF
    International audienceAs explained by Tanzi et al. in the first volume of this book, communicating and autonomous devices will surely have a role to play in the future Public Safety Networks. The “communicating” feature comes from the fact that the information should be delivered in a fast way to rescuers. The “autonomous” characteristic comes from the fact that rescuers should not have to concern themselves about these objects: they should perform their mission autonomously so as not to delay the intervention of the rescuers, but rather to assist them efficiently and reliably.</p
    • 

    corecore