371 research outputs found

    Empowering LLM to use Smartphone for Intelligent Task Automation

    Full text link
    Mobile task automation is an attractive technique that aims to enable voice-based hands-free user interaction with smartphones. However, existing approaches suffer from poor scalability due to the limited language understanding ability and the non-trivial manual efforts required from developers or end-users. The recent advance of large language models (LLMs) in language understanding and reasoning inspires us to rethink the problem from a model-centric perspective, where task preparation, comprehension, and execution are handled by a unified language model. In this work, we introduce AutoDroid, a mobile task automation system that can handle arbitrary tasks on any Android application without manual efforts. The key insight is to combine the commonsense knowledge of LLMs and domain-specific knowledge of apps through automated dynamic analysis. The main components include a functionality-aware UI representation method that bridges the UI with the LLM, exploration-based memory injection techniques that augment the app-specific domain knowledge of LLM, and a multi-granularity query optimization module that reduces the cost of model inference. We integrate AutoDroid with off-the-shelf LLMs including online GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its performance on a new benchmark for memory-augmented Android task automation with 158 common tasks. The results demonstrated that AutoDroid is able to precisely generate actions with an accuracy of 90.9%, and complete tasks with a success rate of 71.3%, outperforming the GPT-4-powered baselines by 36.4% and 39.7%. The demo, benchmark suites, and source code of AutoDroid will be released at url{https://autodroid-sys.github.io/}

    Automated Privacy Protection for Mobile Device Users and Bystanders in Public Spaces

    Get PDF
    As smartphones have gained popularity over recent years, they have provided usersconvenient access to services and integrated sensors that were previously only available through larger, stationary computing devices. This trend of ubiquitous, mobile devices provides unparalleled convenience and productivity for users who wish to perform everyday actions such as taking photos, participating in social media, reading emails, or checking online banking transactions. However, the increasing use of mobile devices in public spaces by users has negative implications for their own privacy and, in some cases, that of bystanders around them. Specifically, digital photography trends in public have negative implications for bystanders who can be captured inadvertently in users’ photos. Those who are captured often have no knowledge of being photographed and have no control over how photos of them are distributed. To address this growing issue, a novel system is proposed for protecting the privacy of bystanders captured in public photos. A fully automated approach to accurately distinguish the intended subjects from strangers is explored. A feature-based classification scheme utilizing entire photos is presented. Additionally, the privacy-minded case of only utilizing local face images with no contextual information from the original image is explored with a convolutional neural network-based classifier. Three methods of face anonymization are implemented and compared: black boxing, Gaussian blurring, and pose-tolerant face swapping. To validate these methods, a comprehensive user survey is conducted to understand the difference in viability between them. Beyond photographing, the privacy of mobile device users can sometimes be impacted in public spaces, as visual eavesdropping or “shoulder surfing” attacks on device screens become feasible. Malicious individuals can easily glean personal data from smartphone and mobile device screens while they are accessed visually. In order to protect displayed user content, anovel, sensor-based visual eavesdropping detection scheme using integrated device cameras is proposed. In order to selectively obfuscate private content while an attacker is nearby, a dynamic scheme for detecting and hiding private content is also developed utilizing User-Interface-as-an-Image (UIaaI). A deep, convolutional object detection network is trained and utilized to identify sensitive content under this scheme. To allow users to customize the types ofcontent to hide, dynamic training sample generation is introduced to retrain the content detection network with very few original UI samples. Web applications are also considered with a Chrome browser extension which automates the detection and obfuscation of sensitive web page fields through HTML parsing and CSS injection

    Survey Report: Audio Branding Support Systems

    Get PDF
    Existing tools for use in audio branding are surveyed and typical core work steps are defined. Particular attention is paid to professional metaphors in use and intuitive usability which support audio branding communication, workflows, automation, monitoring and maintenance. Furthermore design of UIs which give representation support are examined in detail. Results are arranged into concrete requirements and recommendations for the project's tool developments.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Supporting lay users in privacy decisions when sharing sensitive data

    Get PDF
    The first part of the thesis focuses on assisting users in choosing their privacy settings, by using machine learning to derive the optimal set of privacy settings for the user. In contrast to other work, our approach uses context factors as well as individual factors to provide a personalized set of privacy settings. The second part consists of a set of intelligent user interfaces to assist the users throughout the complete privacy journey, from defining friend groups that allow targeted information sharing; through user interfaces for selecting information recipients, to find possible errors or unusual settings, and to refine them; up to mechanisms to gather in-situ feedback on privacy incidents, and investigating how to use these to improve a user’s privacy in the future. Our studies have shown that including tailoring the privacy settings significantly increases the correctness of the predicted privacy settings; whereas the user interfaces have been shown to significantly decrease the amount of unwanted disclosures.Insbesondere nach den jüngsten Datenschutzskandalen in sozialen Netzwerken wird der Datenschutz für Benutzer immer wichtiger. Obwohl die meisten Benutzer behaupten Wert auf Datenschutz zu legen, verhalten sie sich online allerdings völlig anders: Sie lassen die meisten Datenschutzeinstellungen der online genutzten Dienste, wie z. B. von sozialen Netzwerken oder Diensten zur Standortfreigabe, unberührt und passen sie nicht an ihre Datenschutzanforderungen an. In dieser Arbeit werde ich einen Ansatz zur Lösung dieses Problems vorstellen, der auf zwei verschiedenen Säulen basiert. Der erste Teil konzentriert sich darauf, Benutzer bei der Auswahl ihrer Datenschutzeinstellungen zu unterstützen, indem maschinelles Lernen verwendet wird, um die optimalen Datenschutzeinstellungen für den Benutzer abzuleiten. Im Gegensatz zu anderen Arbeiten verwendet unser Ansatz Kontextfaktoren sowie individuelle Faktoren, um personalisierte Datenschutzeinstellungen zu generieren. Der zweite Teil besteht aus einer Reihe intelligenter Benutzeroberflächen, die die Benutzer in verschiedene Datenschutzszenarien unterstützen. Dies beginnt bei einer Oberfläche zur Definition von Freundesgruppen, die im Anschluss genutzt werden können um einen gezielten Informationsaustausch zu ermöglichen, bspw. in sozialen Netzwerken; über Benutzeroberflächen um die Empfänger von privaten Daten auszuwählen oder mögliche Fehler oder ungewöhnliche Datenschutzeinstellungen zu finden und zu verfeinern; bis hin zu Mechanismen, um In-Situ- Feedback zu Datenschutzverletzungen zum Zeitpunkt ihrer Entstehung zu sammeln und zu untersuchen, wie diese verwendet werden können, um die Privatsphäreeinstellungen eines Benutzers anzupassen. Unsere Studien haben gezeigt, dass die Verwendung von individuellen Faktoren die Korrektheit der vorhergesagten Datenschutzeinstellungen erheblich erhöht. Es hat sich gezeigt, dass die Benutzeroberflächen die Anzahl der Fehler, insbesondere versehentliches Teilen von Daten, erheblich verringern

    Smartphone: The Ultimate IoT and IoE Device

    Get PDF
    Internet of Things (IoT) and Internet of Everything (IoE) are emerging communication concepts that will interconnect a variety of devices (including smartphones, home appliances, sensors, and other network devices), people, data, and processes and allow them to communicate with each other seamlessly. These new concepts can be applied in many application domains such as healthcare, transportation, and supply chain management (SCM), to name a few, and allow users to get real-time information such as location-based services, disease management, and tracking. The smartphone-enabling technologies such as built-in sensors, Bluetooth, radio-frequency identification (RFID) tracking, and near-field communications (NFC) allow it to be an integral part of IoT and IoE world and the mostly used device in these environments. However, its use imposes severe security and privacy threats, because the smartphone usually contains and communicates sensitive private data. In this chapter, we provide a comprehensive survey on IoT and IoE technologies, their application domains, IoT structure and architecture, the use of smartphones in IoT and IoE, and the difference between IoT networks and mobile cellular networks. We also provide a concise overview of future opportunities and challenges in IoT and IoE environments and focus more on the security and privacy threats of using the smartphone in IoT and IoE networks with a suggestion of some countermeasures
    • …
    corecore