840 research outputs found

    UFO 2.0: the ‘Universal Feynman Output’ format

    Get PDF
    We present an update of the Universal FeynRules Output model format, commonly known as the UFO format, that is used by several automated matrix-element generators and high-energy physics software. We detail different features that have been proposed as extensions of the initial format during the last ten years, and collect them in the current second version of the model format that we coin the Universal Feynman Output format. Following the initial philosophy of the UFO, they consist of flexible and modular additions to address particle decays, custom propagators, form factors, the renormalisation group running of parameters and masses, and higher-order quantum corrections

    New developments in FeynRules

    Full text link
    The program FeynRules is a Mathematica package developed to facilitate the implementation of new physics theories into high-energy physics tools. Starting from a minimal set of information such as the model gauge symmetries, its particle content, parameters and Lagrangian, FeynRules provides all necessary routines to extract automatically from the Lagrangian (that can also be computed semi-automatically for supersymmetric theories) the associated Feynman rules. These can be further exported to several Monte Carlo event generators through dedicated interfaces, as well as translated into a Python library, under the so-called UFO model format, agnostic of the model complexity, especially in terms of Lorentz and/or color structures appearing in the vertices or of number of external legs. In this work, we briefly report on the most recent new features that have been added to FeynRules, including full support for spin-3/2 fermions, a new module allowing for the automated diagonalization of the particle spectrum and a new set of routines dedicated to decay width calculations.Comment: 6 pages. Contribution to the 15th International Workshop on advanced computing and analysis techniques (ACAT 2013), 16-21 May, Beijing, Chin

    Direct Detection of Dark Matter with MadDM v.2.0

    Full text link
    We present MadDM v.2.0, a numerical tool for dark matter physics in a generic model. This version is the next step towards the development of a fully automated framework for dark matter searches at the interface of collider physics, astro-physics and cosmology. It extends the capabilities of v.1.0 to perform calculations relevant to the direct detection of dark matter. These include calculations of spin-independent/spin-dependent nucleon scattering cross sections and nuclear recoil rates (as a function of both energy and angle), as well as a simplified functionality to compare the model points with existing constraints. The functionality of MadDM v.2.0 incorporates a large selection of dark matter detector materials and sizes, and simulates detector effects on the nuclear recoil signals. We validate the code in a wide range of dark matter models by comparing results from MadDM v.2.0 to the existing tools and literature.Comment: 38 pages, 8 figures, 5 tables; v2. Matches the version accepted for publication in Physics of the Dark Universe. We have improved table IV by validating the other sps points of the MSS

    Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO

    Get PDF
    We present new features of the FeynRules and MadGraph5/aMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FeynRules Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes.Comment: 32 pages, 2 figures. Published versio

    Automated mass spectrum generation for new physics

    Full text link
    We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.Comment: 11 pages, 1 table; version accepted by EPJ
    • 

    corecore