1,102 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Joint Trajectory and Communication Design for UAV-Enabled Multiple Access

    Full text link
    Unmanned aerial vehicles (UAVs) have attracted significant interest recently in wireless communication due to their high maneuverability, flexible deployment, and low cost. This paper studies a UAV-enabled wireless network where the UAV is employed as an aerial mobile base station (BS) to serve a group of users on the ground. To achieve fair performance among users, we maximize the minimum throughput over all ground users by jointly optimizing the multiuser communication scheduling and UAV trajectory over a finite horizon. The formulated problem is shown to be a mixed integer non-convex optimization problem that is difficult to solve in general. We thus propose an efficient iterative algorithm by applying the block coordinate descent and successive convex optimization techniques, which is guaranteed to converge to at least a locally optimal solution. To achieve fast convergence and stable throughput, we further propose a low-complexity initialization scheme for the UAV trajectory design based on the simple circular trajectory. Extensive simulation results are provided which show significant throughput gains of the proposed design as compared to other benchmark schemes.Comment: Submitted for possible publicatio
    • …
    corecore