160 research outputs found

    Multi-resolution mapping and planning for UAV navigation in attitude constrained environments

    Get PDF
    In this thesis we aim to bridge the gap between high quality map reconstruction and Unmanned Aerial Vehicles (UAVs) SE(3) motion planning in challenging environments with narrow openings, such as disaster areas, which requires attitude to be considered. We propose an efficient system that leverages the concept of adaptive-resolution volumetric mapping, which naturally integrates with the hierarchical decomposition of space in an octree data structure. Instead of a Truncated Signed Distance Function (TSDF), we adopt mapping of occupancy probabilities in log-odds representation, which allows representation of both surfaces, as well as the entire free, i.e.\ observed space, as opposed to unobserved space. We introduce a method for choosing resolution -on the fly- in real-time by means of a multi-scale max-min pooling of the input depth image. The notion of explicit free space mapping paired with the spatial hierarchy in the data structure, as well as map resolution, allows for collision queries, as needed for robot motion planning, at unprecedented speed. Our mapping strategy supports pinhole cameras as well as spherical sensor models. Additionally, we introduce a first-of-a-kind global minimum cost path search method based on A* that considers attitude along the path. State-of-the-art methods incorporate attitude only in the refinement stage. To make the problem tractable, our method exploits an adaptive and coarse-to-fine approach using global and local A* runs, plus an efficient method to introduce the UAV attitude in the process. We integrate our method with an SE(3) trajectory optimisation method based on a safe-flight-corridor, yielding a complete path planning pipeline. We quantitatively evaluate our mapping strategy in terms of mapping accuracy, memory, runtime performance, and planning performance showing improvements over the state-of-the-art, particularly in cases requiring high resolution maps. Furthermore, extensive evaluation is undertaken using the AirSim flight simulator under closed loop control in a set of randomised maps, allowing us to quantitatively assess our path initialisation method. We show that it achieves significantly higher success rates than the baselines, at a reduced computational burden.Open Acces

    Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments

    Full text link
    We tackle the problem of planning a minimum-time trajectory for a quadrotor over a sequence of specified waypoints in the presence of obstacles while exploiting the full quadrotor dynamics. This problem is crucial for autonomous search and rescue and drone racing scenarios but was, so far, unaddressed by the robotics community \emph{in its entirety} due to the challenges of minimizing time in the presence of the non-convex constraints posed by collision avoidance. Early works relied on simplified dynamics or polynomial trajectory representations that did not exploit the full actuator potential of a quadrotor and, thus, did not aim at minimizing time. We address this challenging problem by using a hierarchical, sampling-based method with an incrementally more complex quadrotor model. Our method first finds paths in different topologies to guide subsequent trajectory search for a kinodynamic point-mass model. Then, it uses an asymptotically-optimal, kinodynamic sampling-based method based on a full quadrotor model on top of the point-mass solution to find a feasible trajectory with a time-optimal objective. The proposed method is shown to outperform all related baselines in cluttered environments and is further validated in real-world flights at over 60km/h in one of the world's largest motion capture systems. We release the code open source.Comment: Accepted in IEEE Robotics and Automation Letter

    Search-based Motion Planning for Aggressive Flight in SE(3)

    Get PDF
    Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this work, we develop a search-based trajectory planning approach that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with non-zero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.Comment: 8 pages, submitted to RAL and ICRA 201
    • …
    corecore