1,002 research outputs found

    Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation

    Get PDF
    Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs) equipped with wireless transceivers (access points (APs)) are increasingly being touted as being able to provide a flexible "on-the-fly" communications infrastructure that can collect and transmit sensor data from sensors in remote, wilderness, or disaster-hit areas. Recent advances in the mechanical automation of UAVs have resulted in separable APs and replaceable batteries that can be carried by UAVs and placed at arbitrary locations in the field. These advanced mechanized UAV mesh networks pose interesting questions in terms of the design of the network architecture and the optimal UAV scheduling algorithms. This paper studies a range of network architectures that depend on the mechanized automation (AP separation and battery replacement) capabilities of UAVs and proposes heuristic UAV scheduling algorithms for each network architecture, which are benchmarked against optimal designs.Comment: 12 page

    Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    Get PDF
    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN.We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values

    Beamforming based Mitigation of Hovering Inaccuracy in UAV-Aided RFET

    Get PDF
    Hovering inaccuracy of unmanned aerial vehicle (UAV) degrades the performance of UAV-aided radio frequency energy transfer (RFET). Such inaccuracy arises due to positioning error and rotational motion of UAV, which lead to localization mismatch (LM) and orientation mismatch (OM). In this paper, antenna array beam steering based UAV hovering inaccuracy mitigation strategy is presented. The antenna beam does not accurately point towards the field sensor node due to rotational motion of the UAV along with pitch, roll, and yaw, which leads to deviation in the elevation angle. An analytical framework is developed to model this deviation, and its variation is estimated using the data collected through an experimental setup. Closed-form expressions of received power at the field node are obtained for the four cases arising from LM and OM. An optimization problem to estimate the optimal system parameters (transmit power, UAV hovering altitude, and antenna steering parameter) is formulated. The problem is proven to be nonconvex. Therefore, an algorithm is proposed to solve this problem. Simulation results demonstrate that the proposed framework significantly mitigates the hovering inaccuracy; compared to reported state-of-the-art the same performance can be achieved with substantially less transmit power
    corecore