112,165 research outputs found

    Agri-environmental and rural development indicators: a proposal

    Get PDF
    The present work is a proposal of a set of indicators prepared for the Ministry of Agriculture and Forestry. The indicators are to be used in monitoring the implementation of the Ministry's strategy for sustainable use of natural resources. The core of the present work is in setting up an indicator system, which is structured around specific themes. The focus is on the assessment of agricultural and rural development. At the end, an attempt is made to provide a comprehensive picture by considering the mutual inter-linkages between the various indicators

    Hydrogen-powered road vehicles : the health benfits and drawbacks of a new fuel

    Get PDF
    Because of the political, social and environmental problems associated with dependency on fossil fuels, there is considerable interest in alternative energy sources. Hydrogen is regarded as a promising option, particularly as a fuel for road vehicles. The Dutch Energy Research Centre (ECN) recently published a vision of the future, in which it suggested that by 2050 more than half of all cars in the Netherlands could be running on hydrogen. A switch to using hydrogen as the primary energy source for road vehicles would have far-reaching social consequences. As with all technological developments, opportunities would be created, but drawbacks would inevitably be encountered as well. Some of the disadvantages associated with hydrogen are already known, and are to some degree manageable. It is likely, however, that other drawbacks would come to light only once hydrogen-powered cars were actually in use. With that thought in mind, and in view of the social significance of a possible transition to hydrogen, it was decided that the Health Council should assess the positive and negative effects that hydrogen use could have on public health. It is particularly important to make such an assessment at the present early stage in the development of hydrogen technologies, so that gaps in existing scientific knowledge may be identified and appropriate strategies may be developed for addressing such gaps. This report has been produced by the Health and Environment Surveillance Committee, which has special responsibility for the identification of important correlations between environmental factors and public health

    Review of existing information on the interrelations between soil and climate change. (ClimSoil). Final report

    Get PDF
    Carbon stock in EU soils – The soil carbon stocks in the EU27 are around 75 billion tonnes of carbon (C); of this stock around 50% is located in Sweden, Finland and the United Kingdom (because of the vast area of peatlands in these countries) and approximately 20% is in peatlands, mainly in countries in the northern part of Europe. The rest is in mineral soils, again the higher amount being in northern Europe. 2. Soils sink or source for CO2 in the EU – Both uptake of carbon dioxide (CO2) through photosynthesis and plant growth and loss of CO2 through decomposition of organic matter from terrestrial ecosystems are significant fluxes in Europe. Yet, the net terrestrial carbon fluxes are typically 5-10 times smaller relative to the emissions from use of fossil fuel of 4000 Mt CO2 per year. 3. Peat and organic soils - The largest emissions of CO2 from soils are resulting from land use change and especially drainage of organic soils and amount to 20-40 tonnes of CO2 per hectare per year. The most effective option to manage soil carbon in order to mitigate climate change is to preserve existing stocks in soils, and especially the large stocks in peat and other soils with a high content of organic matter. 4. Land use and soil carbon – Land use and land use change significantly affects soil carbon stocks. On average, soils in Europe are most likely to be accumulating carbon on a net basis with a sink for carbon in soils under grassland and forest (from 0 - 100 billion tonnes of carbon per year) and a smaller source for carbon from soils under arable land (from 10 - 40 billion tonnes of carbon per year). Soil carbon losses occur when grasslands, managed forest lands or native ecosystems are converted to croplands and vice versa carbon stocks increase, albeit it slower, following conversion of cropland. 5. Soil management and soil carbon – Soil management has a large impact on soil carbon. Measures directed towards effective management of soil carbon are available and identified, and many of these are feasible and relatively inexpensive to implement. Management for lower nitrogen (N) emissions and lower C emissions is a useful approach to prevent trade off and swapping of emissions between the greenhouse gases CO2, methane (CH4) and nitrous oxide (N2O). 6. Carbon sequestration – Even though effective in reducing or slowing the build up of CO2 in the atmosphere, soil carbon sequestration is surely no ‘golden bullet’ alone to fight climate change due to the limited magnitude of its effect and its potential reversibility; it could, nevertheless, play an important role in climate mitigation alongside other measures, especially because of its immediate availability and relative low cost for 'buying' us time. 7. Effects of climate change on soil carbon pools – Climate change is expected to have an impact on soil carbon in the longer term, but far less an impact than does land use change, land use and land management. We have not found strong and clear evidence for either overall and combined positive of negative impact of climate change (atmospheric CO2, temperature, precipitation) on soil carbon stocks. Due to the relatively large gross exchange of CO2 between atmosphere and soils and the significant stocks of carbon in soils, relatively small changes in these large and opposing fluxes of CO2, i.e. as result of land use (change), land management and climate change, may have significant impact on our climate and on soil quality. 8. Monitoring systems for changes in soil carbon – Currently, monitoring and knowledge on land use and land use change in EU27 is inadequate for accurate calculation of changes in soil carbon contents. Systematic and harmonized monitoring across EU27 and across relevant land uses would allow for adequate representation of changes in soil carbon in reporting emissions from soils and sequestration in soils to the UNFCCC. 9. EU policies and soil carbon – Environmental requirements under the Cross Compliance requirement of CAP is an instrument that may be used to maintain SOC. Neither measures under UNFCCC nor those mentioned in the proposed Soil Framework Directive are expected to adversely impact soil C. EU policy on renewable energy is not necessarily a guarantee for appropriate (soil) carbon management

    An overview of current status of carbon dioxide capture and storage technologies

    Get PDF
    AbstractGlobal warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process

    Building-integrated rooftop greenhouses: an energy and environmental assessment in the mediterranean context

    Get PDF
    A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses heated with oil, gas or biomass systems, the iRTG delivered an equivalent carbon savings of 113.8, 82.4 or 5.5 kg CO2(eq)/m2/yr, respectively, and economic savings of 19.63, 15.88 or 17.33 €/m2/yr, respectively. Under similar climatic conditions, this symbiosis between buildings and urban agriculture makes an iRTG an efficient resource-management model and supports the promotion of a new typology or concept of buildings with a nexus or symbiosis between energy efficiency and food production.Postprint (published version

    China, the United States, and the Climate Change Challenge

    Get PDF
    Outlines China's climate change policy, U.S. concerns about transfer of carbon-intensive jobs to China and ways to address them, ways for U.S. policy and legislation to spur China's adoption of clean technologies, and specific mechanisms for cooperation

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed
    corecore