944 research outputs found

    Analysis and Selection of a Remote Docking Simulation Visual Display System

    Get PDF
    The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station

    Multi-touch For General-purpose Computing An Examination Of Text Entry

    Get PDF
    In recent years, multi-touch has been heralded as a revolution in humancomputer interaction. Multi-touch provides features such as gestural interaction, tangible interfaces, pen-based computing, and interface customization – features embraced by an increasingly tech-savvy public. However, multi-touch platforms have not been adopted as everyday computer interaction devices; that is, multi-touch has not been applied to general-purpose computing. The questions this thesis seeks to address are: Will the general public adopt these systems as their chief interaction paradigm? Can multi-touch provide such a compelling platform that it displaces the desktop mouse and keyboard? Is multi-touch truly the next revolution in human-computer interaction? As a first step toward answering these questions, we observe that generalpurpose computing relies on text input, and ask: Can multi-touch, without a text entry peripheral, provide a platform for efficient text entry? And, by extension, is such a platform viable for general-purpose computing? We investigate these questions through four user studies that collected objective and subjective data for text entry and word processing tasks. The first of these studies establishes a benchmark for text entry performance on a multi-touch platform, across a variety of input modes. The second study attempts to improve this performance by iv examining an alternate input technique. The third and fourth studies include mousestyle interaction for formatting rich-text on a multi-touch platform, in the context of a word processing task. These studies establish a foundation for future efforts in general-purpose computing on a multi-touch platform. Furthermore, this work details deficiencies in tactile feedback with modern multi-touch platforms, and describes an exploration of audible feedback. Finally, the thesis conveys a vision for a general-purpose multi-touch platform, its design and rationale

    An ergonomics training program for student notebook computer users: Preliminary outcomes of a six-year cohort study

    Get PDF
    BACKGROUND: The Maine Learning Technology Initiative (MLTI) is a program established in the state of Maine in the United States of America, where all students in 7th and 8th grades are provided with a notebook computer to use at school and at home during the academic year. OBJECTIVE: This study aimed to describe the anthropometric measurements and typing proficiency of a cohort of students in the MLTI. It also investigated the impact of participatory ergonomics education and use of peripheral notebook accessories on their reported musculoskeletal and visual discomfort over the first three years of a six year study. METHODS: This longitudinal study commenced in 2009 with 34 students in 7th grade consenting to participate for six years through the 12th grade. Students received ergonomics education about healthy notebook use, reinforced with web-based resources; and were provided with peripheral notebook accessories including a notebook riser, and external keyboard (split or non-split) and mouse. RESULTS: The use of an external keyboard resulted in a reduction in neck and shoulder pain. Participants self-reported fewer headaches when using an external mouse. Using no external accessories was associated with self-reported back pain. Although other musculoskeletal discomforts decreased over time, the changes were not statistically significant. There was a trend for the reduction of visual symptoms including dry/watery eyes and sore, tired eyes during the study. CONCLUSION: Participatory ergonomics training and use of external devices may have significant health benefits for children involved in notebook programs who have daily exposure to this technology for school and leisure purposes. Internal and external validity of the results were limited by small sample size

    The Future of the Internet III

    Get PDF
    Presents survey results on technology experts' predictions on the Internet's social, political, and economic impact as of 2020, including its effects on integrity and tolerance, intellectual property law, and the division between personal and work lives

    Enhancing interaction in mixed reality

    Get PDF
    With continuous technological innovation, we observe mixed reality emerging from research labs into the mainstream. The arrival of capable mixed reality devices transforms how we are entertained, consume information, and interact with computing systems, with the most recent being able to present synthesized stimuli to any of the human senses and substantially blur the boundaries between the real and virtual worlds. In order to build expressive and practical mixed reality experiences, designers, developers, and stakeholders need to understand and meet its upcoming challenges. This research contributes a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. We present the results of seven studies examining the challenges and opportunities of mixed reality experiences, the impact of modalities and interaction techniques on the user experience, and how to enhance the experiences. We begin with a study determining user attitudes towards mixed reality in domestic and educational environments, followed by six research probes that each investigate an aspect of reality or virtuality. In the first, a levitating steerable projector enables us to investigate how the real world can be enhanced without instrumenting the user. We show that the presentation of in-situ instructions for navigational tasks leads to a significantly higher ability to observe and recall real-world landmarks. With the second probe, we enhance the perception of reality by superimposing information usually not visible to the human eye. In amplifying the human vision, we enable users to perceive thermal radiation visually. Further, we examine the effect of substituting physical components with non-functional tangible proxies or entirely virtual representations. With the third research probe, we explore how to enhance virtuality to enable a user to input text on a physical keyboard while being immersed in the virtual world. Our prototype tracked the user’s hands and keyboard to enable generic text input. Our analysis of text entry performance showed the importance and effect of different hand representations. We then investigate how to touch virtuality by simulating generic haptic feedback for virtual reality and show how tactile feedback through quadcopters can significantly increase the sense of presence. Our final research probe investigates the usability and input space of smartphones within mixed reality environments, pairing the user’s smartphone as an input device with a secondary physical screen. Based on our learnings from these individual research probes, we developed a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. The taxonomy is based on the human sensory system and human capabilities of articulation. We showcased its versatility and set our research probes into perspective by organizing them inside the taxonomic space. The design guidelines are divided into user-centered and technology-centered. It is our hope that these will contribute to the bright future of mixed reality systems while emphasizing the new underlining interaction paradigm.Mixed Reality (vermischte Realitäten) gehen aufgrund kontinuierlicher technologischer Innovationen langsam von der reinen Forschung in den Massenmarkt über. Mit der Einführung von leistungsfähigen Mixed-Reality-Geräten verändert sich die Art und Weise, wie wir Unterhaltungsmedien und Informationen konsumieren und wie wir mit Computersystemen interagieren. Verschiedene existierende Geräte sind in der Lage, jeden der menschlichen Sinne mit synthetischen Reizen zu stimulieren. Hierdurch verschwimmt zunehmend die Grenze zwischen der realen und der virtuellen Welt. Um eindrucksstarke und praktische Mixed-Reality-Erfahrungen zu kreieren, müssen Designer und Entwicklerinnen die künftigen Herausforderungen und neuen Möglichkeiten verstehen. In dieser Dissertation präsentieren wir eine neue Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen. Wir stellen die Ergebnisse von sieben Studien vor, in denen die Herausforderungen und Chancen von Mixed-Reality-Erfahrungen, die Auswirkungen von Modalitäten und Interaktionstechniken auf die Benutzererfahrung und die Möglichkeiten zur Verbesserung dieser Erfahrungen untersucht werden. Wir beginnen mit einer Studie, in der die Haltung der nutzenden Person gegenüber Mixed Reality in häuslichen und Bildungsumgebungen analysiert wird. In sechs weiteren Fallstudien wird jeweils ein Aspekt der Realität oder Virtualität untersucht. In der ersten Fallstudie wird mithilfe eines schwebenden und steuerbaren Projektors untersucht, wie die Wahrnehmung der realen Welt erweitert werden kann, ohne dabei die Person mit Technologie auszustatten. Wir zeigen, dass die Darstellung von in-situ-Anweisungen für Navigationsaufgaben zu einer deutlich höheren Fähigkeit führt, Sehenswürdigkeiten der realen Welt zu beobachten und wiederzufinden. In der zweiten Fallstudie erweitern wir die Wahrnehmung der Realität durch Überlagerung von Echtzeitinformationen, die für das menschliche Auge normalerweise unsichtbar sind. Durch die Erweiterung des menschlichen Sehvermögens ermöglichen wir den Anwender:innen, Wärmestrahlung visuell wahrzunehmen. Darüber hinaus untersuchen wir, wie sich das Ersetzen von physischen Komponenten durch nicht funktionale, aber greifbare Replikate oder durch die vollständig virtuelle Darstellung auswirkt. In der dritten Fallstudie untersuchen wir, wie virtuelle Realitäten verbessert werden können, damit eine Person, die in der virtuellen Welt verweilt, Text auf einer physischen Tastatur eingeben kann. Unser Versuchsdemonstrator detektiert die Hände und die Tastatur, zeigt diese in der vermischen Realität an und ermöglicht somit die verbesserte Texteingaben. Unsere Analyse der Texteingabequalität zeigte die Wichtigkeit und Wirkung verschiedener Handdarstellungen. Anschließend untersuchen wir, wie man Virtualität berühren kann, indem wir generisches haptisches Feedback für virtuelle Realitäten simulieren. Wir zeigen, wie Quadrokopter taktiles Feedback ermöglichen und dadurch das Präsenzgefühl deutlich steigern können. Unsere letzte Fallstudie untersucht die Benutzerfreundlichkeit und den Eingaberaum von Smartphones in Mixed-Reality-Umgebungen. Hierbei wird das Smartphone der Person als Eingabegerät mit einem sekundären physischen Bildschirm verbunden, um die Ein- und Ausgabemodalitäten zu erweitern. Basierend auf unseren Erkenntnissen aus den einzelnen Fallstudien haben wir eine neuartige Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen entwickelt. Die Taxonomie basiert auf dem menschlichen Sinnessystem und den Artikulationsfähigkeiten. Wir stellen die vielseitige Verwendbarkeit vor und setzen unsere Fallstudien in Kontext, indem wir sie innerhalb des taxonomischen Raums einordnen. Die Gestaltungsrichtlinien sind in nutzerzentrierte und technologiezentrierte Richtlinien unterteilt. Es ist unsere Anliegen, dass diese Gestaltungsrichtlinien zu einer erfolgreichen Zukunft von Mixed-Reality-Systemen beitragen und gleichzeitig die neuen Interaktionsparadigmen hervorheben

    Optimizing Human Performance in Mobile Text Entry

    Get PDF
    Although text entry on mobile phones is abundant, research strives to achieve desktop typing performance "on the go". But how can researchers evaluate new and existing mobile text entry techniques? How can they ensure that evaluations are conducted in a consistent manner that facilitates comparison? What forms of input are possible on a mobile device? Do the audio and haptic feedback options with most touchscreen keyboards affect performance? What influences users' preference for one feedback or another? Can rearranging the characters and keys of a keyboard improve performance? This dissertation answers these questions and more. The developed TEMA software allows researchers to evaluate mobile text entry methods in an easy, detailed, and consistent manner. Many in academia and industry have adopted it. TEMA was used to evaluate a typical QWERTY keyboard with multiple options for audio and haptic feedback. Though feedback did not have a significant effect on performance, a survey revealed that users' choice of feedback is influenced by social and technical factors. Another study using TEMA showed that novice users entered text faster using a tapping technique than with a gesture or handwriting technique. This motivated rearranging the keys and characters to create a new keyboard, MIME, that would provide better performance for expert users. Data on character frequency and key selection times were gathered and used to design MIME. A longitudinal user study using TEMA revealed an entry speed of 17 wpm and a total error rate of 1.7% for MIME, compared to 23 wpm and 5.2% for QWERTY. Although MIME's entry speed did not surpass QWERTY's during the study, it is projected to do so after twelve hours of practice. MIME's error rate was consistently low and significantly lower than QWERTY's. In addition, participants found MIME more comfortable to use, with some reporting hand soreness after using QWERTY for extended periods

    Keyboard layout in eye gaze communication access: typical vs. ALS

    Get PDF
    The purpose of the current investigation was to determine which of three keyboard layouts is the most efficient for typical as well as neurologically-compromised first-time users of eye gaze access. All participants (16 neurotypical, 16 amyotrophic lateral sclerosis; ALS) demonstrated hearing and reading abilities sufficient to interact with all stimuli. Participants from each group answered questions about technology use and vision status. Participants with ALS also noted date of first disease-related symptoms, initial symptoms, and date of diagnosis. Once a speech generating device (SGD) with eye gaze access capabilities was calibrated to an individual participant's eyes, s/he practiced utilizing the access method. Then all participants spelled word, phrases, and a longer phrase on each of three keyboard layouts (i.e., standard QWERTY, alphabetic with highlighted vowels, frequency of occurrence). Accuracy of response, error rate, and eye typing time were determined for each participant for all layouts.  Results indicated that both groups shared equivalent experience with technology. Additionally, neurotypical adults typed more accurately than the ALS group on all keyboards. The ALS group made more errors in eye typing than the neurotypical participants, but accuracy and disease status were independent of one another. Although the neurotypical group had a higher efficiency ratio (i.e. accurate keystrokes to total active task time) for the frequency layout, there were no such differences noted for the QWERTY or alphabetic keyboards. No differences were observed between the groups for either typing rate or preference ratings on any keyboard, though most participants preferred the standard QWERTY layout. No relationships were identified between preference order of the three keyboards and efficiency scores or the quantitative variables (i.e., rate, accuracy, error scores). There was no relationship between time since ALS diagnosis and preference ratings for each of the three keyboard layouts.   It appears that individuals with spinal-onset ALS perform similarly to their neurotypical peers with respect to first-time use of eye gaze access for typing words and phrases on three different keyboard layouts. Ramifications of the results as well as future directions for research are discussed.  Ph.D

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    The Development of a Computer Operator Risk Index to Assist Computer Operators

    Get PDF
    Computer workstation ergonomics is well into its third decade of computer related injuries and disease. Numerous studies have been completed to inform the scientific and private communities of the threats that are posed when working at a computer. There are also multiple variables involved with attaining a computer related injury or disease, and any one of those variables, or a combination of those variables, may put a computer operator at risk. The purpose of this study was to develop a computer operator risk index (CORI), based on previous literature and containing risk variables approved by an expert panel, which is designed for relatively simple calculations. The four main risk variables were time, posture, stress, and environment. This study used 100 participants (58 females and 42 males), with a mean age of 45.8 years from an age range of 20 to 64 years, who had worked at a computer for at least 1 year and worked at least three hours per day at the computer. Not only were females and males incorporated into this study, but four ethnic backgrounds as well. Participants were asked to complete a demographic survey developed for this study, as well as a combined pain/discomfort rating chart adapted from Corlett and Bishops (1976) body chart and Borg’s (1970) CR-10 pain rating scale, a self-evaluating stress test, adapted from Yang’ (2003) self-evaluation stress test, and a Likert-type survey, which was part of the CORI form, concerning the computer operator’s work environment. The remaining sections of the CORI form were completed from observations of an expert analyst. Information contained in the demographic survey and the pain/discomfort chart was used to verify previous research that stated gender was considered a risk factor in computer operators for related illnesses or injuries. In this study Chi-Square tests showed no association (X2 = 0.036,p=0.85) in gender to show this to be true. Data from the pain/discomfort chart was combined with data taken from the CORI form and found to show a significant difference with all four major risk variables. Time, posture, stress, and environmental measures at α=.05 , showed correlation (ρ\u3c.05) with the pain measures. Furthermore, the demographic survey contained data stating that some participants had been previously medically diagnosed with a computer related injury or disease and those participants, using Chi-Square testing, were compared to the results produced from the CORI equation and found to have a significant difference and high correlation (X2 = 6.683, p = .01) . From the data retrieved and calculated in this study a logistic regression model was developed that provided the expert analyst with a means with which to measure risk to computer operators. This model included the four independent variables: time, posture, stress, and environment, which are also the four main sections of the CORI form. The CORI form is recommended for initial risk screening, but is not meant to be solely dependent upon in determining the risk of a computer operator... There are several parts of this study that in themselves may be useful. The Pain/Discomfort Rating Scale may be used to discern between severity levels of pain for computer operators, the Self-Evaluation Stress test may be used to test stress levels of computer operators, and the Computer Operator Survey may be used to collect pertinent demographic information for employers
    corecore