6,988 research outputs found

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    Stand-up Comedy and Humor by Robots

    Get PDF

    Do Chatbots Dream of Androids? Prospects for the Technological Development of Artificial Intelligence and Robotics

    Get PDF
    The article discusses the main trends in the development of artificial intelligence systems and robotics (AI&R). The main question that is considered in this context is whether artificial systems are going to become more and more anthropomorphic, both intellectually and physically. In the current article, the author analyzes the current state and prospects of technological development of artificial intelligence and robotics, and also determines the main aspects of the impact of these technologies on society and economy, indicating the geopolitical strategic nature of this influence. The author considers various approaches to the definition of artificial intelligence and robotics, focusing on the subject-oriented and functional ones. It also compares AI&R abilities and human abilities in areas such as categorization, pattern recognition, planning and decision making, etc. Based on this comparison, we investigate in which areas AI&R’s performance is inferior to a human, and in which cases it is superior to one. The modern achievements in the field of robotics and artificial intelligence create the necessary basis for further discussion of the applicability of goal setting in engineering, in the form of a Turing test. It is shown that development of AI&R is associated with certain contradictions that impede the application of Turing’s methodology in its usual format. The basic contradictions in the development of AI&R technologies imply that there is to be a transition to a post-Turing methodology for assessing engineering implementations of artificial intelligence and robotics. In such implementations, on the one hand, the ‘Turing wall’ is removed, and on the other hand, artificial intelligence gets its physical implementation

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    Designing humor for playable cities

    Get PDF
    Smartness, made possible by intelligent sensors and actuators, is invading our home, office and public environments. This smartness monitors, anticipates and supports our activities, increasing efficiency of our activities. Smartness is usually associated with efficiency, but it also allows environments, virtual humans and social robots to display emotions, empathy and provide environments to introduce and support humorous events. We review examples of playful and humorous street furniture in ‘playable’ cities and projects that allow residents and visitors to interact with objects and environments in playful and humorous ways. We add observations on humor theory, in particular observations that deal with physical, visual and multimodal humor. Our emphasis is on introducing incongruities and on exploring different forms of incongruities in order to introduce humorous situations. Inventories of incongruities are explored. These inventories have been obtained from observing humor in everyday situations, in comedies, in movies, and in TV commercials. Shortcomings of these inventories from the point of view of multimodal and interaction humor are discussed and some preliminary views on additional approaches are provided

    The Immune System: the ultimate fractionated cyber-physical system

    Full text link
    In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
    • 

    corecore