7,276 research outputs found

    Bounded Combinatory Logic

    Get PDF
    In combinatory logic one usually assumes a fixed set of basic combinators (axiom schemes), usually K and S. In this setting the set of provable formulas (inhabited types) is PSPACE-complete in simple types and undecidable in intersection types. When arbitrary sets of axiom schemes are considered, the inhabitation problem is undecidable even in simple types (this is known as Linial-Post theorem). k-bounded combinatory logic with intersection types arises from combinatory logic by imposing the bound k on the depth of types (formulae) which may be substituted for type variables in axiom schemes. We consider the inhabitation (provability) problem for k-bounded combinatory logic: Given an arbitrary set of typed combinators and a type tau, is there a combinatory term of type tau in k-bounded combinatory logic? Our main result is that the problem is (k+2)-EXPTIME complete for k-bounded combinatory logic with intersection types, for every fixed k (and hence non-elementary when k is a parameter). We also show that the problem is EXPTIME-complete for simple types, for all k. Theoretically, our results give new insight into the expressive power of intersection types. From an application perspective, our results are useful as a foundation for composition synthesis based on combinatory logic

    Are there Hilbert-style Pure Type Systems?

    Full text link
    For many a natural deduction style logic there is a Hilbert-style logic that is equivalent to it in that it has the same theorems (i.e. valid judgements with empty contexts). For intuitionistic logic, the axioms of the equivalent Hilbert-style logic can be propositions which are also known as the types of the combinators I, K and S. Hilbert-style versions of illative combinatory logic have formulations with axioms that are actual type statements for I, K and S. As pure type systems (PTSs)are, in a sense, equivalent to systems of illative combinatory logic, it might be thought that Hilbert-style PTSs (HPTSs) could be based in a similar way. This paper shows that some PTSs have very trivial equivalent HPTSs, with only the axioms as theorems and that for many PTSs no equivalent HPTS can exist. Most commonly used PTSs belong to these two classes. For some PTSs however, including lambda* and the PTS at the basis of the proof assistant Coq, there is a nontrivial equivalent HPTS, with axioms that are type statements for I, K and S.Comment: Accepted in Logical Methods in Computer Scienc

    Using Inhabitation in Bounded Combinatory Logic with Intersection Types for Composition Synthesis

    Full text link
    We describe ongoing work on a framework for automatic composition synthesis from a repository of software components. This work is based on combinatory logic with intersection types. The idea is that components are modeled as typed combinators, and an algorithm for inhabitation {\textemdash} is there a combinatory term e with type tau relative to an environment Gamma? {\textemdash} can be used to synthesize compositions. Here, Gamma represents the repository in the form of typed combinators, tau specifies the synthesis goal, and e is the synthesized program. We illustrate our approach by examples, including an application to synthesis from GUI-components.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    Mixin Composition Synthesis based on Intersection Types

    Full text link
    We present a method for synthesizing compositions of mixins using type inhabitation in intersection types. First, recursively defined classes and mixins, which are functions over classes, are expressed as terms in a lambda calculus with records. Intersection types with records and record-merge are used to assign meaningful types to these terms without resorting to recursive types. Second, typed terms are translated to a repository of typed combinators. We show a relation between record types with record-merge and intersection types with constructors. This relation is used to prove soundness and partial completeness of the translation with respect to mixin composition synthesis. Furthermore, we demonstrate how a translated repository and goal type can be used as input to an existing framework for composition synthesis in bounded combinatory logic via type inhabitation. The computed result is a class typed by the goal type and generated by a mixin composition applied to an existing class

    Undecidability of Equality in the Free Locally Cartesian Closed Category (Extended version)

    Get PDF
    We show that a version of Martin-L\"of type theory with an extensional identity type former I, a unit type N1 , Sigma-types, Pi-types, and a base type is a free category with families (supporting these type formers) both in a 1- and a 2-categorical sense. It follows that the underlying category of contexts is a free locally cartesian closed category in a 2-categorical sense because of a previously proved biequivalence. We show that equality in this category is undecidable by reducing it to the undecidability of convertibility in combinatory logic. Essentially the same construction also shows a slightly strengthened form of the result that equality in extensional Martin-L\"of type theory with one universe is undecidable

    A herbrandized functional interpretation of classical first-order logic

    Get PDF
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ, associates the star type σ^∗ of the nonempty finite subsets of elements of type σ. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements.info:eu-repo/semantics/publishedVersio
    corecore