201 research outputs found

    A Calculus of Mobile Resources

    No full text
    We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of systems containing mobile, possibly nested, computing devices that may have resource and access constraints, and which are not copyable nor modifiable per se. We provide a reduction as well as a labelled transition semantics and prove a correspondence be- tween barbed bisimulation congruence and a higher-order bisimulation. We provide examples of the expressiveness of the calculus, and apply the theory to prove one of its characteristic properties

    Acute: high-level programming language design for distributed computation

    No full text
    Existing languages provide good support for typeful programming of standalone programs. In a distributed system, however, there may be interaction between multiple instances of many distinct programs, sharing some (but not necessarily all) of their module structure, and with some instances rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming language support for such systems, focussing on their typing and naming issues. We describe an experimental language, Acute, which extends an ML core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across the entire distributed system; (3) expression-level names generated to ensure that name equality tests suffice for type-safety of associated values, e.g. values carried on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads and mutexes to support computation mobility. These features are a large part of what is needed for typeful distributed programming. They are a relatively lightweight extension of ML, should be efficiently implementable, and are expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs. This disentangles the language runtime from communication intricacies. This paper highlights the main design choices in Acute. It is supported by a full language definition (of typing, compilation, and operational semantics), by a prototype implementation, and by example distribution libraries

    Language Based Techniques for Systems Biology

    Get PDF

    Self-Adaptive Monitors for Multiparty Sessions

    Get PDF

    Self-adaptive multiparty sessions

    Get PDF

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Validation of the Human Factors Satisfaction Questionnaire

    Get PDF
    In order to predict behavior in organizations, it is important to understand and to consider both the individual employee and his/her interaction with the physical work environment. The main purpose of this research was to gather evidence of the validity of the Human Factors Satisfaction Questionnaire (HFSQ) in order to provide a tool with which employees\u27 preceptions of several elements of their physical work environments can be measured. The physical work environment and its relationship to both organization theory and motivation theory is discussed. Evidence of the construct validity of the HFSQ was sought through the administration of the HFSQ to 641 employees of 8 organizations, along with established measures of job satisfaction, organization commitment, turnover intentions, participation in goal setting, feedback in goal effort, perceived crowding, task privacy, and communications privacy. Hypotheses 1 and 2 stated that the HFSQ would converge with measures of peoples\u27 perceptions of their objective physical work environment and discriminate from other measures. These expectations were contradicted by the correlational data. However, when the HFSQ was considered to be a measure of the physical work environment satisfaction construct, it was seen to converge with other measures of job satisfaction and to be less strongly related to non-satisfaction measures. Hypothesis 3 stated that the HFSQ would be a significant contributor to the model illustrating the relationships between the job satisfaction, organization commitment, and turnover intention constructs, and that the model would fit better with the HFSQ than without it. The investigation of the job satisfaction construct measurement model provided evidence of the validity of the physical work environment satisfaction construct and of the HFSQ as a measure of that construct, while the data provided support for Hypothesis 3. Finally, it was expected (Hypothesis 4) that groups of people who worked in distinct physical environments would report significantly different HFSQ scores. This hypothesis received no support. Therefore, the study provided mixed evidence for the construct validity of the HFSQ and for the physical work environment satisfaction construct

    A static analysis framework for security properties in mobile and cryptographic systems

    Get PDF
    We introduce a static analysis framework for detecting instances of security breaches in infinite mobile and cryptographic systems specified using the languages of the 7r-calculus and its cryptographic extension, the spi calculus. The framework is composed from three components: First, standard denotational semantics of the 7r-calculus and the spi calculus are constructed based on domain theory. The resulting model is sound and adequate with respect to transitions in the operational semantics. The standard semantics is then extended correctly to non-uniformly capture the property of term substitution, which occurs as a result of communications and successful cryptographic operations. Finally, the non-standard semantics is abstracted to operate over finite domains so as to ensure the termination of the static analysis. The safety of the abstract semantics is proven with respect to the nonstandard semantics. The results of the abstract interpretation are then used to capture breaches of the secrecy and authenticity properties in the analysed systems. Two initial prototype implementations of the security analysis for the 7r-calculus and the spi calculus are also included in the thesis. The main contributions of this thesis are summarised by the following. In the area of denotational semantics, the thesis introduces a domain-theoretic model for the spi calculus that is sound and adequate with respect to transitions in the structural operational semantics. In the area of static program analysis, the thesis utilises the denotational approach as the basis for the construction of abstract interpretations for infinite systems modelled by the 7r-calculus and the spi calculus. This facilitates the use of computationally significant mathematical concepts like least fixed points and results in an analysis that is fully compositional. Also, the thesis demonstrates that the choice of the term-substitution property in mobile and cryptographic programs is rich enough to capture breaches of security properties, like process secrecy and authenticity. These properties are used to analyse a number of mobile and cryptographic protocols, like the file transfer protocol and the Needham-Schroeder, SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo Lam authentication protocols

    DynamiTE:A 21st-Century Framework for Concurrent Component-Based Design

    Get PDF
    The free ride for software developers is over. In the past, computer programs have increased in performance simply by running on new hardware with ever increasing clock speeds. Now, however, this line of development has reached its end and chip designers are producing new processors, not with faster clocks, but with more cores. To take advantage of the speed increases offered by these new products, applications need to be redesigned with parallel processing firmly in mind. The problem is that mainstream designs are still inherently sequential. Concurrency tends to be an afterthought that may be useful to gain a performance boost, not an essential part of the design process. The current vogue for object-oriented designs tends to also have the side-effect of making them heavily data-oriented which doesn't scale well; each shared element of data has to be protected from simultaneous access, resulting in operations becoming sequential again. In addition, the usual methods for protecting data tend to be very low-level and error-prone. In this thesis, we introduce a new design method whereby applications are constructed from small sequential tasks connected by intercommunication primitives. Our approach is based on a two-stage process; first, the individual tasks are created as independent entities and tested with appropriate inputs, then secondly, the communication infrastructure between them is developed. We provide support for the latter via the DynamiTE framework, which allows the interactions to be defined using the terms of a process calculus. Depending on the developer's background, they can treat this as just another API, as a design pattern or as an algebraic expression which can be property checked for issues such as deadlocks. Either way, the communication layer can be developed, tested and evaluated separately from the tasks once it is known how the tasks will interface with one another. To supplement DynamiTE, we define our own process calculus, Nomadic Time, using a carefully chosen novel selection of constructs. Among the features of the calculus are the ability to perform communication both locally (one-to-one) and globally (one-to-many), and the flexibility to change the location of tasks during execution. Security is paramount to the design of Nomadic Time and migratory operations can be limited in two ways; by simple enumeration of possibilities or by the optional typing of constructs to allow restriction on a task-by-task basis. While it can't eradicate all the problems inherent in designing concurrent applications, DynamiTE can make things easier by reducing the dependency on shared resources and enhancing the reusability of concurrent components
    corecore