219,133 research outputs found

    Towards Energy Consumption Verification via Static Analysis

    Full text link
    In this paper we leverage an existing general framework for resource usage verification and specialize it for verifying energy consumption specifications of embedded programs. Such specifications can include both lower and upper bounds on energy usage, and they can express intervals within which energy usage is to be certified to be within such bounds. The bounds of the intervals can be given in general as functions on input data sizes. Our verification system can prove whether such energy usage specifications are met or not. It can also infer the particular conditions under which the specifications hold. To this end, these conditions are also expressed as intervals of functions of input data sizes, such that a given specification can be proved for some intervals but disproved for others. The specifications themselves can also include preconditions expressing intervals for input data sizes. We report on a prototype implementation of our approach within the CiaoPP system for the XC language and XS1-L architecture, and illustrate with an example how embedded software developers can use this tool, and in particular for determining values for program parameters that ensure meeting a given energy budget while minimizing the loss in quality of service.Comment: Presented at HIP3ES, 2015 (arXiv: 1501.03064

    The Synthesis of Logic Programs from Inductive Proofs

    Get PDF

    Program Semantics and Classical Logic

    Get PDF
    In the tradition of Denotational Semantics one usually lets program constructs take their denotations in reflexive domains, i.e. in domains where self-application is possible. For the bulk of programming constructs, however, working with reflexive domains is an unnecessary complication. In this paper we shall use the domains of ordinary classical type logic to provide the semantics of a simple programming language containing choice and recursion. We prove that the rule of {\em Scott Induction\/} holds in this new setting, prove soundness of a Hoare calculus relative to our semantics, give a direct calculus C{\cal C} on programs, and prove that the denotation of any program PP in our semantics is equal to the union of the denotations of all those programs LL such that PP follows from LL in our calculus and LL does not contain recursion or choice

    Abstract Interpretation-based verification/certification in the ciaoPP system

    Get PDF
    CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Constraint) Logic Programming system. It uses modular, incremental abstract interpretation as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approximations thus produced have been applied to perform high- and low-level optimizations during program compilation, including transformations such as múltiple abstract specialization, parallelization, partial evaluation, resource usage control, and program verification. More recently, novel and promising applications of such semantic approximations are being applied in the more general context of program development such as program verification. In this work, we describe our extensión of the system to incorpórate Abstraction-Carrying Code (ACC), a novel approach to mobile code safety. ACC follows the standard strategy of associating safety certificates to programs, originally proposed in Proof Carrying- Code. A distinguishing feature of ACC is that we use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstractinterpreter. We have implemented and benchmarked ACC within CiaoPP. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-time (and run-time) tools for the certification of CLP programs with resource consumption assurances

    Operational Semantics of Resolution and Productivity in Horn Clause Logic

    Get PDF
    This paper presents a study of operational and type-theoretic properties of different resolution strategies in Horn clause logic. We distinguish four different kinds of resolution: resolution by unification (SLD-resolution), resolution by term-matching, the recently introduced structural resolution, and partial (or lazy) resolution. We express them all uniformly as abstract reduction systems, which allows us to undertake a thorough comparative analysis of their properties. To match this small-step semantics, we propose to take Howard's System H as a type-theoretic semantic counterpart. Using System H, we interpret Horn formulas as types, and a derivation for a given formula as the proof term inhabiting the type given by the formula. We prove soundness of these abstract reduction systems relative to System H, and we show completeness of SLD-resolution and structural resolution relative to System H. We identify conditions under which structural resolution is operationally equivalent to SLD-resolution. We show correspondence between term-matching resolution for Horn clause programs without existential variables and term rewriting.Comment: Journal Formal Aspect of Computing, 201
    corecore