4,806 research outputs found

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    Practical Datatype Specializations with Phantom Types and Recursion Schemes

    Get PDF
    Datatype specialization is a form of subtyping that captures program invariants on data structures that are expressed using the convenient and intuitive datatype notation. Of particular interest are structural invariants such as well-formedness. We investigate the use of phantom types for describing datatype specializations. We show that it is possible to express statically-checked specializations within the type system of Standard ML. We also show that this can be done in a way that does not lose useful programming facilities such as pattern matching in case expressions.Comment: 25 pages. Appeared in the Proc. of the 2005 ACM SIGPLAN Workshop on M

    A reification calculus for model-oriented software specification

    Get PDF
    This paper presents a transformational approach to the derivation of implementations from model-oriented specifications of abstract data types. The purpose of this research is to reduce the number of formal proofs required in model refinement, which hinder software development. It is shown to be appli- cable to the transformation of models written in Meta-iv (the specification lan- guage of Vdm) towards their refinement into, for example, Pascal or relational DBMSs. The approach includes the automatic synthesis of retrieve functions between models, and data-type invariants. The underlying algebraic semantics is the so-called final semantics “`a la Wand”: a specification “is” a model (heterogeneous algebra) which is the final ob ject (up to isomorphism) in the category of all its implementations. The transformational calculus approached in this paper follows from exploring the properties of finite, recursively defined sets. This work extends the well-known strategy of program transformation to model transformation, adding to previous work on a transformational style for operation- decomposition in META-IV. The model-calculus is also useful for improving model-oriented specifications.(undefined

    Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

    Full text link
    We present an approach to program reasoning which inserts between a program and its verification conditions an additional layer, the denotation of the program expressed in a declarative form. The program is first translated into its denotation from which subsequently the verification conditions are generated. However, even before (and independently of) any verification attempt, one may investigate the denotation itself to get insight into the "semantic essence" of the program, in particular to see whether the denotation indeed gives reason to believe that the program has the expected behavior. Errors in the program and in the meta-information may thus be detected and fixed prior to actually performing the formal verification. More concretely, following the relational approach to program semantics, we model the effect of a program as a binary relation on program states. A formal calculus is devised to derive from a program a logic formula that describes this relation and is subject for inspection and manipulation. We have implemented this idea in a comprehensive form in the RISC ProgramExplorer, a new program reasoning environment for educational purposes which encompasses the previously developed RISC ProofNavigator as an interactive proving assistant.Comment: In Proceedings THedu'11, arXiv:1202.453

    Refined Kirby calculus for integral homology spheres

    Full text link
    A theorem of Kirby states that two framed links in the 3-sphere produce orientation-preserving homeomorphic results of surgery if they are related by a sequence of stabilization and handle-slide moves. The purpose of the present paper is twofold: First, we give a sufficient condition for a sequence of handle-slides on framed links to be able to be replaced with a sequences of algebraically canceling pairs of handle-slides. Then, using the first result, we obtain a refinement of Kirby's calculus for integral homology spheres which involves only +/-1-framed links with zero linking numbers.Comment: This is the version published by Geometry & Topology on 18 September 200
    • …
    corecore