277 research outputs found

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    Dependently typed array programs don't go wrong

    Get PDF
    AbstractThe array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming imposes non-trivial structural constraints on ranks, shapes, and element values of arrays. A prominent example where such constraints are violated are out-of-bound array accesses. Usually, such constraints are enforced by means of run time checks. Both the run time overhead inflicted by dynamic constraint checking and the uncertainty of proper program evaluation are undesirable.We propose a novel type system for array programs based on dependent types. Our type system makes dynamic constraint checks obsolete and guarantees orderly evaluation of well-typed programs. We employ integer vectors of statically unknown length to index array types. We also show how constraints on these vectors are resolved using a suitable reduction to integer scalars. Our presentation is based on a functional array calculus that captures the essence of the paradigm without the legacy and obfuscation of a fully-fledged array programming language
    • …
    corecore