4,337 research outputs found

    Type-Directed Program Synthesis and Constraint Generation for Library Portability

    Get PDF
    Fast numerical libraries have been a cornerstone of scientific computing for decades, but this comes at a price. Programs may be tied to vendor specific software ecosystems resulting in polluted, non-portable code. As we enter an era of heterogeneous computing, there is an explosion in the number of accelerator libraries required to harness specialized hardware. We need a system that allows developers to exploit ever-changing accelerator libraries, without over-specializing their code. As we cannot know the behavior of future libraries ahead of time, this paper develops a scheme that assists developers in matching their code to new libraries, without requiring the source code for these libraries. Furthermore, it can recover equivalent code from programs that use existing libraries and automatically port them to new interfaces. It first uses program synthesis to determine the meaning of a library, then maps the synthesized description into generalized constraints which are used to search the program for replacement opportunities to present to the developer. We applied this approach to existing large applications from the scientific computing and deep learning domains. Using our approach, we show speedups ranging from 1.1×\times to over 10×\times on end to end performance when using accelerator libraries.Comment: Accepted to PACT 201

    VLSI design methodology

    Get PDF

    Verified lifting of stencil computations

    Get PDF
    This paper demonstrates a novel combination of program synthesis and verification to lift stencil computations from low-level Fortran code to a high-level summary expressed using a predicate language. The technique is sound and mostly automated, and leverages counter-example guided inductive synthesis (CEGIS) to find provably correct translations. Lifting existing code to a high-performance description language has a number of benefits, including maintainability and performance portability. For example, our experiments show that the lifted summaries can enable domain specific compilers to do a better job of parallelization as compared to an off-the-shelf compiler working on the original code, and can even support fully automatic migration to hardware accelerators such as GPUs. We have implemented verified lifting in a system called STNG and have evaluated it using microbenchmarks, mini-apps, and real-world applications. We demonstrate the benefits of verified lifting by first automatically summarizing Fortran source code into a high-level predicate language, and subsequently translating the lifted summaries into Halide, with the translated code achieving median performance speedups of 4.1X and up to 24X for non-trivial stencils as compared to the original implementation.United States. Department of Energy. Office of Science (Award DE-SC0008923)United States. Department of Energy. Office of Science (Award DE-SC0005288

    Hardware-software codesign in a high-level synthesis environment

    Get PDF
    Interfacing hardware-oriented high-level synthesis to software development is a computationally hard problem for which no general solution exists. Under special conditions, the hardware-software codesign (system-level synthesis) problem may be analyzed with traditional tools and efficient heuristics. This dissertation introduces a new alternative to the currently used heuristic methods. The new approach combines the results of top-down hardware development with existing basic hardware units (bottom-up libraries) and compiler generation tools. The optimization goal is to maximize operating frequency or minimize cost with reasonable tradeoffs in other properties. The dissertation research provides a unified approach to hardware-software codesign. The improvements over previously existing design methodologies are presented in the frame-work of an academic CAD environment (PIPE). This CAD environment implements a sufficient subset of functions of commercial microelectronics CAD packages. The results may be generalized for other general-purpose algorithms or environments. Reference benchmarks are used to validate the new approach. Most of the well-known benchmarks are based on discrete-time numerical simulations, digital filtering applications, and cryptography (an emerging field in benchmarking). As there is a need for high-performance applications, an additional requirement for this dissertation is to investigate pipelined hardware-software systems\u27 performance and design methods. The results demonstrate that the quality of existing heuristics does not change in the enhanced, hardware-software environment

    Application of shape grammar theory to underground rail station design and passenger evacuation

    Get PDF
    This paper outlines the development of a computer design environment that generates station ‘reference’ plans for analysis by designers at the project feasibility stage. The developed program uses the theoretical concept of shape grammar, based upon principles of recognition and replacement of a particular shape to enable the generation of station layouts. The developed novel shape grammar rules produce multiple plans of accurately sized infrastructure faster than by traditional means. A finite set of station infrastructure elements and a finite set of connection possibilities for them, directed by regulations and the logical processes of station usage, allows for increasingly complex composite shapes to be automatically produced, some of which are credible station layouts at ‘reference’ block plan level. The proposed method of generating shape grammar plans is aligned to London Underground standards, in particular to the Station Planning Standards and Guidelines 5th edition (SPSG5 2007) and the BS-7974 fire safety engineering process. Quantitative testing is via existing evacuation modelling software. The prototype system, named SGEvac, has both the scope and potential for redevelopment to any other country’s design legislation
    • …
    corecore