284,648 research outputs found

    A new 21-cm absorber identified with an LLL \sim L^\star galaxy

    Full text link
    We present Giant Metrewave Radio Telescope (GMRT) observations of redshifted 21-cm absorption from the z=0.437z=0.437 metal line absorption system towards PKS 1243-072. HI absorption is clearly detected; the absorption profile has a velocity spread of 20\sim 20 km/s. Detection of 21-cm absorption indicates that the absorber has an HI column density large enough to be classified as a damped Lyman-α\alpha system. Follow up ground based optical imaging and spectroscopy allow us to identify the absorber with an LLL \sim L^\star galaxy at an impact parameter of 9.8\sim 9.8 kpc from the line of sight to the QSO. The absorbing galaxy is unusual in that it has bright emission lines. On the basis of the optical spectrum we are unable to uniquely classify the galaxy since its emission line ratios lie in the transition region between starburst and Seyfert II type spectra.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks

    Get PDF
    Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E103\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    High Metallicity Mg II Absorbers in the z < 1 Lyman alpha Forest of PKS 0454+039: Giant LSB Galaxies?

    Full text link
    We report the discovery of two iron-group enhanced high-metallicity Mg II absorbers in a search through 28 Lyman Alpha forest clouds along the PKS 0454+039 sight line. Based upon our survey and the measured redshift number densities of W_r(MgII) <= 0.3 A absorbers and Lyman Alpha absorbers at z ~ 1, we suggest that roughly 5% of Lyman Alpha absorbers at z < 1 will exhibit "weak" Mg II absorption to a 5-sigma W_r(2796) detection limit of 0.02 A. The two discovered absorbers, at redshifts z = 0.6248 and z = 0.9315, have W_r(Lya) = 0.33 and 0.15 A, respectively. Based upon photoionization modeling, the H I column densities are inferred to be in the range 15.8 <= log N(HI) <= 16.8 cm^-2. For the z = 0.6428 absorber, if the abundance pattern is solar, then the cloud has [Fe/H] > -1; if its gas-phase abundance follows that of depleted clouds in our Galaxy, then [Fe/H] > 0 is inferred. For the z = 0.9315 absorber, the metallicity is [Fe/H] > 0, whether the abundance pattern is solar or suffers depletion. Imaging and spectroscopic studies of the PKS 0454+039 field reveal no candidate luminous objects at these redshifts. We discuss the possibility that these Mg II absorbers may arise in the class of "giant" low surface brightness galaxies, which have [Fe/H] >= -1, and even [Fe/H] >= 0, in their extended disks. We tentatively suggest that a substantial fraction of these "weak" Mg II absorbers may select low surface brightness galaxies out to z ~ 1.Comment: Accepted The Astrophysical Journal; 25 pages; 6 encapsulated figure

    Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Full text link
    We present a new matched filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar Point Spread Function (PSF) is first subtracted using a Karhunen-Lo\'eve Image Processing (KLIP) algorithm with Angular and Spectral Differential Imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the Signal-to-Noise Ratio (SNR) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal SNR loss. We also developed a complete pipeline for the automated detection of point source candidates, the calculation of Receiver Operating Characteristics (ROC), false positives based contrast curves, and completeness contours. We process in a uniform manner more than 330 datasets from the Gemini Planet Imager Exoplanet Survey (GPIES) and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false positive rate. We show that the new forward model matched filter allows the detection of 50%50\% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false positive rate.Comment: ApJ accepte

    Synthetic speech detection and audio steganography in VoIP scenarios

    Get PDF
    The distinction between synthetic and human voice uses the techniques of the current biometric voice recognition systems, which prevent that a person’s voice, no matter if with good or bad intentions, can be confused with someone else’s. Steganography gives the possibility to hide in a file without a particular value (usually audio, video or image files) a hidden message in such a way as to not rise suspicion to any external observer. This article suggests two methods, applicable in a VoIP hypothetical scenario, which allow us to distinguish a synthetic speech from a human voice, and to insert within the Comfort Noise a text message generated in the pauses of a voice conversation. The first method takes up the studies already carried out for the Modulation Features related to the temporal analysis of the speech signals, while the second one proposes a technique that derives from the Direct Sequence Spread Spectrum, which consists in distributing the signal energy to hide on a wider band transmission. Due to space limits, this paper is only an extended abstract. The full version will contain further details on our research
    corecore