6,770 research outputs found

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    An artificial immune systems based predictive modelling approach for the multi-objective elicitation of Mamdani fuzzy rules: a special application to modelling alloys

    Get PDF
    In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani Fuzzy Rule-Based Systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    Automatic generation of fuzzy classification rules using granulation-based adaptive clustering

    Get PDF
    A central problem of fuzzy modelling is the generation of fuzzy rules that fit the data to the highest possible extent. In this study, we present a method for automatic generation of fuzzy rules from data. The main advantage of the proposed method is its ability to perform data clustering without the requirement of predefining any parameters including number of clusters. The proposed method creates data clusters at different levels of granulation and selects the best clustering results based on some measures. The proposed method involves merging clusters into new clusters that have a coarser granulation. To evaluate performance of the proposed method, three different datasets are used to compare performance of the proposed method to other classifiers: SVM classifier, FCM fuzzy classifier, subtractive clustering fuzzy classifier. Results show that the proposed method has better classification results than other classifiers for all the datasets used

    A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data

    Get PDF
    The current financial crisis has stressed the need to obtain more accurate prediction models in order to decrease risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle real-world imbalanced financial datasets without using sampling techniques that might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on interval-valued fuzzy rule-based classification system with tuning and rule selection (IVTURS FA RC-HD ) for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good prediction accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and, thus, avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including 11 real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1, and interval-valued fuzzy counterparts that use the synthetic minority oversampling technique (SMOTE) to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost-sensitive C4.5, and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids preprocessing techniques, and it provides interpretable models that allow obtaining more accurate results

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page
    • 

    corecore