282 research outputs found

    Managing data through the lens of an ontology

    Get PDF
    Ontology-based data management aims at managing data through the lens of an ontology, that is, a conceptual representation of the domain of interest in the underlying information system. This new paradigm provides several interesting features, many of which have already been proved effective in managing complex information systems. This article introduces the notion of ontology-based data management, illustrating the main ideas underlying the paradigm, and pointing out the importance of knowledge representation and automated reasoning for addressing the technical challenges it introduces

    Tabled CLP for Reasoning Over Stream Data

    Get PDF
    The interest in reasoning over stream data is growing as quickly as the amount of data generated. Our intention is to change the way stream data is analyzed. This is an important problem because we constantly have new sensors collecting information, new events from electronic devices and/or from customers and we want to reason about this information. For example, information about traffic jams and costumer order could be used to define a deliverer route. When there is a new order or a new traffic jam, we usually restart from scratch in order to recompute the route. However, if we have several deliveries and we analyze the information from thousands of sensors, we would like to reduce the computation requirements, e.g. reusing results from the previous computation. Nowadays, most of the applications that analyze stream data are specialized for specific problems (using complex algorithms and heuristics) and combine a computation language with a query language. As a result, when the problems become more complex (in e.g. reasoning requirements), in order to modify the application complex and error prone coding is required. We propose a framework based on a high-level language rooted in logic and constraints that will be able to provide customized services to different problems. The framework will discard wrong solutions in early stages and will reuse previous results that are still consistent with the current data set. The use of a constraint logic programming language will make it easier to translate the problem requirements into the code and will minimize the amount of re-engineering needed to comply with the requirements when they change

    Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog

    Get PDF
    We propose a novel, type-elimination-based method for reasoning in the description logic SHIQbs including DL-safe rules. To this end, we first establish a knowledge compilation method converting the terminological part of an ALCIb knowledge base into an ordered binary decision diagram (OBDD) which represents a canonical model. This OBDD can in turn be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base in order to perform combined reasoning. In order to leverage our technique for full SHIQbs, we provide a stepwise reduction from SHIQbs to ALCIb that preserves satisfiability and entailment of positive and negative ground facts. The proposed technique is shown to be worst case optimal w.r.t. combined and data complexity and easily admits extensions with ground conjunctive queries.Comment: 38 pages, 3 figures, camera ready version of paper accepted for publication in Logical Methods in Computer Scienc
    • …
    corecore