5,452 research outputs found

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    OpenPING: A Reflective Middleware for the Construction of Adaptive Networked Game Applications

    Get PDF
    The emergence of distributed Virtual Reality (VR) applications that run over the Internet has presented networked game application designers with new challenges. In an environment where the public internet streams multimedia data and is constantly under pressure to deliver over widely heterogeneous user-platforms, there has been a growing need that distributed VR applications be aware of and adapt to frequent variations in their context of execution. In this paper, we argue that in contrast to research efforts targeted at improvement of scalability, persistence and responsiveness capabilities, much less attempts have been aimed at addressing the flexibility, maintainability and extensibility requirements in contemporary distributed VR platforms. We propose the use of structural reflection as an approach that not only addresses these requirements but also offers added value in the form of providing a framework for scalability, persistence and responsiveness that is itself flexible, maintainable and extensible. We also present an adaptive middleware platform implementation called OpenPING1 that supports our proposal in addressing these requirements

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Data refinement for true concurrency

    Get PDF
    The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components modify and observe the system state with fine-grained atomicity. Many systems (e.g., multi-core processors, real-time controllers) also exhibit truly concurrent behaviour, where multiple events can occur simultaneously. This paper presents data refinement defined in terms of an interval-based framework, which includes high-level operators that capture non-deterministic expression evaluation. By modifying the type of an interval, our theory may be specialised to cover data refinement of both discrete and continuous systems. We present an interval-based encoding of forward simulation, then prove that our forward simulation rule is sound with respect to our data refinement definition. A number of rules for decomposing forward simulation proofs over both sequential and parallel composition are developed

    Reasoning algebraically about refinement on TSO architectures

    Get PDF
    The Total Store Order memory model is widely implemented by modern multicore architectures such as x86, where local buffers are used for optimisation, allowing limited forms of instruction reordering. The presence of buffers and hardware-controlled buffer flushes increases the level of non-determinism from the level specified by a program, complicating the already difficult task of concurrent programming. This paper presents a new notion of refinement for weak memory models, based on the observation that pending writes to a process' local variables may be treated as if the effect of the update has already occurred in shared memory. We develop an interval-based model with algebraic rules for various programming constructs. In this framework, several decomposition rules for our new notion of refinement are developed. We apply our approach to verify the spinlock algorithm from the literature

    Probabilistic Rely-guarantee Calculus

    Full text link
    Jones' rely-guarantee calculus for shared variable concurrency is extended to include probabilistic behaviours. We use an algebraic approach which combines and adapts probabilistic Kleene algebras with concurrent Kleene algebra. Soundness of the algebra is shown relative to a general probabilistic event structure semantics. The main contribution of this paper is a collection of rely-guarantee rules built on top of that semantics. In particular, we show how to obtain bounds on probabilities by deriving rely-guarantee rules within the true-concurrent denotational semantics. The use of these rules is illustrated by a detailed verification of a simple probabilistic concurrent program: a faulty Eratosthenes sieve.Comment: Preprint submitted to TCS-QAP

    Towards a Theory of Glue

    Get PDF
    We propose and study the notions of behaviour type and composition operator making a first step towards the definition of a formal framework for studying behaviour composition in a setting sufficiently general to provide insight into how the component-based systems should be modelled and compared. We illustrate the proposed notions on classical examples (Traces, Labelled Transition Systems and Coalgebras). Finally, the definition of memoryless glue operators, takes us one step closer to a formal understanding of the separation of concerns principle stipulating that computational aspects of a system should be localised within its atomic components, whereas coordination layer responsible for managing concurrency should be realised by memoryless glue operators.Comment: In Proceedings ICE 2012, arXiv:1212.345

    Reactive concurrent programming revisited

    Get PDF
    In this note we revisit the so-called reactive programming style, which evolves from the synchronous programming model of the Esterel language by weakening the assumption that the absence of an event can be detected instantaneously. We review some research directions that have been explored since the emergence of the reactive model ten years ago. We shall also outline some questions that remain to be investigated
    corecore