1,980,467 research outputs found

    Theory for electric dipole superconductivity with an application for bilayer excitons

    Full text link
    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we provide a general theory for the electric dipole superconductivity, and derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.Comment: 10 pages, 5 figures, 1 Supplementary Informatio

    Anomalous Nernst effect in type-II Weyl semimetals

    Full text link
    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.Comment: 8 pages, 7 figure

    Entanglement and its dynamics in open, dissipative systems

    Get PDF
    Quantum mechanical entanglement can exist in noisy open quantum systems at high temperature. A simple mechanism, where system particles are randomly reset to some standard initial state, can counteract the deteriorating effect of decoherence, resulting in an entangled steady state far from thermodynamical equilibrium. We present models for both gas-type systems and for strongly coupled systems. We point out in which way the entanglement resulting from such a reset mechanism is different from the entanglement that one can find in thermal states. We develop master equations to describe the system and its interaction with an environment, study toy models with two particles (qubits), where the master equation can often be solved analytically, and finally examine larger systems with possibly fluctuating particle numbers. We find that in gas-type systems, the reset mechanism can produce an entangled steady state for an arbitrary temperature of the environment, while this is not true in strongly coupled systems. But even then, the temperature range where one can find entangled steady states is typically much higher with the reset mechanism.Comment: 30 pages, 15 figure
    • …
    corecore