34,901 research outputs found

    Spinal codes

    Get PDF
    Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the sequential application of a pseudo-random hash function to the message bits to produce a sequence of coded symbols for transmission. This encoding ensures that two input messages that differ in even one bit lead to very different coded sequences after the point at which they differ, providing good resilience to noise and bit errors. To decode spinal codes, this paper develops an approximate maximum-likelihood decoder, called the bubble decoder, which runs in time polynomial in the message size and achieves the Shannon capacity over both additive white Gaussian noise (AWGN) and binary symmetric channel (BSC) models. Experimental results obtained from a software implementation of a linear-time decoder show that spinal codes achieve higher throughput than fixed-rate LDPC codes, rateless Raptor codes, and the layered rateless coding approach of Strider, across a range of channel conditions and message sizes. An early hardware prototype that can decode at 10 Mbits/s in FPGA demonstrates that spinal codes are a practical construction.Massachusetts Institute of Technology (Irwin and Joan Jacobs Presidential Fellowship)Massachusetts Institute of Technology (Claude E. Shannon Assistantship)Intel Corporation (Intel Fellowship

    cDNA that encodes active agrin

    Get PDF
    Agrin is thought to mediate the motor neuron-induced aggregation of AChRs and AChE on the surface of muscle fibers at neuromuscular junctions. We have isolated a cDNA from a chick brain library that, based on sequence homology and expression experiments, codes for active agrin. Examination of the sequence reveals considerable similarity to homologous cDNAs previously isolated from ray and rat libraries. A conspicuous difference is an insertion of 33 by in chick agrin cDNA, which endows the encoded protein with AChR/AChE aggregating activity. Homologous transcripts having the 33 by insertion were detected in the ray CNS, which indicates that an insertion of similar size is conserved in agrin in many, if not all, vertebrate species. Results of in situ hybridization studies and PCR experiments on mRNA isolated from motor neuron-enriched fractions of the spinal cord indicate that, consistent with the agrin hypothesis, motor neurons contain transcripts that code for active agrin

    Agrin isoforms and their role in synaptogenesis

    Get PDF
    Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system

    Improving Patient Decision-Making in Health Care

    Get PDF
    Outlines regional variations within Minnesota in rates of patients with similar conditions receiving elective surgery, the concept of shared decision making, treatment choices for eight conditions, and steps for ensuring patients make informed decisions

    Deterministic Rateless Codes for BSC

    Full text link
    A rateless code encodes a finite length information word into an infinitely long codeword such that longer prefixes of the codeword can tolerate a larger fraction of errors. A rateless code achieves capacity for a family of channels if, for every channel in the family, reliable communication is obtained by a prefix of the code whose rate is arbitrarily close to the channel's capacity. As a result, a universal encoder can communicate over all channels in the family while simultaneously achieving optimal communication overhead. In this paper, we construct the first \emph{deterministic} rateless code for the binary symmetric channel. Our code can be encoded and decoded in O(β)O(\beta) time per bit and in almost logarithmic parallel time of O(βlogn)O(\beta \log n), where β\beta is any (arbitrarily slow) super-constant function. Furthermore, the error probability of our code is almost exponentially small exp(Ω(n/β))\exp(-\Omega(n/\beta)). Previous rateless codes are probabilistic (i.e., based on code ensembles), require polynomial time per bit for decoding, and have inferior asymptotic error probabilities. Our main technical contribution is a constructive proof for the existence of an infinite generating matrix that each of its prefixes induce a weight distribution that approximates the expected weight distribution of a random linear code

    How to use the International Classification of Functioning, Disability and Health as a reference system for comparative evaluation and standardized reporting of rehabilitation interventions

    Get PDF
    Rehabilitation aims to optimize functioning of persons experiencing functioning limitations. As such the comparative evaluation of rehabilitation interventions relies on the analysis of the differences between the change in patient functioning after a specific rehabilitation intervention versus the change following another intervention. A robust health information reference system that can facilitate the comparative evaluation of changes in functioning in rehabilitation studies and the standardized reporting of rehabilitation interventions is the International Classification of Functioning, Disability and Health (ICF). The objective of this paper is to present recommendations that Cochrane Rehabilitation could adopt for using the ICF in rehabilitation studies by: 1) defining the functioning categories to be included in a rehabilitation study; 2) specifying selected functioning categories and selecting suitable data collection instruments; 3) examining aspects of functioning that have been documented in a study; 4) reporting functioning data collected with various data collection instruments; and 5) communicating results in an accessible, meaningful and easily understandable way. The authors provide examples of concrete studies that underscore these recommendations, whereby also em-phasizing the need for future research on the implementation of specific recommendations, e.g. in meta-analysis in systematic literature reviews. Furthermore, the paper outlines how the ICF can complement or be integrated in established Cochrane and rehabilitation research structures and methods, e.g. use of standard mean difference to compare cross-study data collected using different measures, in developing core outcome sets for rehabilitation, and the use of the PICO model. © 2019 EDIZIONI MINERVA MEDICA

    Spinal codes

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from PDF student-submitted version of thesis.Includes bibliographical references (p. 52-55).Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the sequential application of a pseudo-random hash function to the message bits, to produce a sequence of coded symbols for transmission. This encoding ensures that two input messages that differ in even one bit lead to very different coded sequences after the point at which they differ, providing good resilience to noise and bit errors. To decode spinal codes, we develop an approximate maximum-likelihood decoder, called the bubble decoder, which runs in time polynomial in the message size and achieves the Shannon capacity over both additive white Gaussian noise (AWGN) and binary symmetric channel (BSC) models. The decoder trades off throughput for computation (hardware area or decoding time), allowing the decoder to scale gracefully with available hardware resources. Experimental results obtained from a software implementation of a linear-time decoder show that spinal codes achieve higher throughput than fixed-rate LDPC codes [11], rateless Raptor codes [35], and the layered rateless coding approach [8] of Strider [12], across a wide range of channel conditions and message sizes. An early hardware prototype that can decode at 10 Mbits/s in FPGA demonstrates that spinal codes are a practical construction.by Jonathan Perry.S.M
    corecore