17,479 research outputs found

    On Frequency LTL in Probabilistic Systems

    Get PDF
    We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal logic (LTL) with a path operator GpG^p expressing that on a path, certain formula holds with at least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic is particularly useful in probabilistic systems, where some undesirable events such as random failures may occur and are acceptable if they are rare enough. Frequency-related extensions of LTL have been previously studied by several authors, where mostly the logic is equipped with an extended "until" and "globally" operator, leading to undecidability of most interesting problems. For the variant we study, we are able to establish fundamental decidability results. We show that for Markov chains, the problem of computing the probability with which a given fLTL formula holds has the same complexity as the analogous problem for LTL. We also show that for Markov decision processes the problem becomes more delicate, but when restricting the frequency bound pp to be 1 and negations not to be outside any GpG^p operator, we can compute the maximum probability of satisfying the fLTL formula. This can be again performed with the same time complexity as for the ordinary LTL formulas.Comment: A paper presented at CONCUR 2015, with appendi

    Models of Quantum Cellular Automata

    Full text link
    In this paper we present a systematic view of Quantum Cellular Automata (QCA), a mathematical formalism of quantum computation. First we give a general mathematical framework with which to study QCA models. Then we present four different QCA models, and compare them. One model we discuss is the traditional QCA, similar to those introduced by Shumacher and Werner, Watrous, and Van Dam. We discuss also Margolus QCA, also discussed by Schumacher and Werner. We introduce two new models, Coloured QCA, and Continuous-Time QCA. We also compare our models with the established models. We give proofs of computational equivalence for several of these models. We show the strengths of each model, and provide examples of how our models can be useful to come up with algorithms, and implement them in real-world physical devices

    Coding-theorem Like Behaviour and Emergence of the Universal Distribution from Resource-bounded Algorithmic Probability

    Full text link
    Previously referred to as `miraculous' in the scientific literature because of its powerful properties and its wide application as optimal solution to the problem of induction/inference, (approximations to) Algorithmic Probability (AP) and the associated Universal Distribution are (or should be) of the greatest importance in science. Here we investigate the emergence, the rates of emergence and convergence, and the Coding-theorem like behaviour of AP in Turing-subuniversal models of computation. We investigate empirical distributions of computing models in the Chomsky hierarchy. We introduce measures of algorithmic probability and algorithmic complexity based upon resource-bounded computation, in contrast to previously thoroughly investigated distributions produced from the output distribution of Turing machines. This approach allows for numerical approximations to algorithmic (Kolmogorov-Chaitin) complexity-based estimations at each of the levels of a computational hierarchy. We demonstrate that all these estimations are correlated in rank and that they converge both in rank and values as a function of computational power, despite fundamental differences between computational models. In the context of natural processes that operate below the Turing universal level because of finite resources and physical degradation, the investigation of natural biases stemming from algorithmic rules may shed light on the distribution of outcomes. We show that up to 60\% of the simplicity/complexity bias in distributions produced even by the weakest of the computational models can be accounted for by Algorithmic Probability in its approximation to the Universal Distribution.Comment: 27 pages main text, 39 pages including supplement. Online complexity calculator: http://complexitycalculator.com
    corecore