2,149 research outputs found

    A network approach to topic models

    Full text link
    One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured texts. Topic models are one popular machine-learning approach which infers the latent topical structure of a collection of documents. Despite their success --- in particular of its most widely used variant called Latent Dirichlet Allocation (LDA) --- and numerous applications in sociology, history, and linguistics, topic models are known to suffer from severe conceptual and practical problems, e.g. a lack of justification for the Bayesian priors, discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics. Here we obtain a fresh view on the problem of identifying topical structures by relating it to the problem of finding communities in complex networks. This is achieved by representing text corpora as bipartite networks of documents and words. By adapting existing community-detection methods -- using a stochastic block model (SBM) with non-parametric priors -- we obtain a more versatile and principled framework for topic modeling (e.g., it automatically detects the number of topics and hierarchically clusters both the words and documents). The analysis of artificial and real corpora demonstrates that our SBM approach leads to better topic models than LDA in terms of statistical model selection. More importantly, our work shows how to formally relate methods from community detection and topic modeling, opening the possibility of cross-fertilization between these two fields.Comment: 22 pages, 10 figures, code available at https://topsbm.github.io

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Exploring the topical structure of short text through probability models : from tasks to fundamentals

    Get PDF
    Recent technological advances have radically changed the way we communicate. Today’s communication has become ubiquitous and it has fostered the need for information that is easier to create, spread and consume. As a consequence, we have experienced the shortening of text messages in mediums ranging from electronic mailing, instant messaging to microblogging. Moreover, the ubiquity and fast-paced nature of these mediums have promoted their use for unthinkable tasks. For instance, reporting real-world events was classically carried out by news reporters, but, nowadays, most interesting events are first disclosed on social networks like Twitter by eyewitness through short text messages. As a result, the exploitation of the thematic content in short text has captured the interest of both research and industry. Topic models are a type of probability models that have traditionally been used to explore this thematic content, a.k.a. topics, in regular text. Most popular topic models fall into the sub-class of LVMs (Latent Variable Models), which include several latent variables at the corpus, document and word levels to summarise the topics at each level. However, classical LVM-based topic models struggle to learn semantically meaningful topics in short text because the lack of co-occurring words within a document hampers the estimation of the local latent variables at the document level. To overcome this limitation, pooling and hierarchical Bayesian strategies that leverage on contextual information have been essential to improve the quality of topics in short text. In this thesis, we study the problem of learning semantically meaningful and predictive representations of text in two distinct phases: • In the first phase, Part I, we investigate the use of LVM-based topic models for the specific task of event detection in Twitter. In this situation, the use of contextual information to pool tweets together comes naturally. Thus, we first extend an existing clustering algorithm for event detection to use the topics learned from pooled tweets. Then, we propose a probability model that integrates topic modelling and clustering to enable the flow of information between both components. • In the second phase, Part II and Part III, we challenge the use of local latent variables in LVMs, specially when the context of short messages is not available. First of all, we study the evaluation of the generalization capabilities of LVMs like PFA (Poisson Factor Analysis) and propose unbiased estimation methods to approximate it. With the most accurate method, we compare the generalization of chordal models without latent variables to that of PFA topic models in short and regular text collections. In summary, we demonstrate that by integrating clustering and topic modelling, the performance of event detection techniques in Twitter is improved due to the interaction between both components. Moreover, we develop several unbiased likelihood estimation methods for assessing the generalization of PFA and we empirically validate their accuracy in different document collections. Finally, we show that we can learn chordal models without latent variables in text through Chordalysis, and that they can be a competitive alternative to classical topic models, specially in short text.Els avenços tecnològics han canviat radicalment la forma que ens comuniquem. Avui en dia, la comunicació és ubiqua, la qual cosa fomenta l’ús de informació fàcil de crear, difondre i consumir. Com a resultat, hem experimentat l’escurçament dels missatges de text en diferents medis de comunicació, des del correu electrònic, a la missatgeria instantània, al microblogging. A més de la ubiqüitat, la naturalesa accelerada d’aquests medis ha promogut el seu ús per tasques fins ara inimaginables. Per exemple, el relat d’esdeveniments era clàssicament dut a terme per periodistes a peu de carrer, però, en l’actualitat, el successos més interessants es publiquen directament en xarxes socials com Twitter a través de missatges curts. Conseqüentment, l’explotació de la informació temàtica del text curt ha atret l'interès tant de la recerca com de la indústria. Els models temàtics (o topic models) són un tipus de models de probabilitat que tradicionalment s’han utilitzat per explotar la informació temàtica en documents de text. Els models més populars pertanyen al subgrup de models amb variables latents, els quals incorporen varies variables a nivell de corpus, document i paraula amb la finalitat de descriure el contingut temàtic a cada nivell. Tanmateix, aquests models tenen dificultats per aprendre la semàntica en documents curts degut a la manca de coocurrència en les paraules d’un mateix document, la qual cosa impedeix una correcta estimació de les variables locals. Per tal de solucionar aquesta limitació, l’agregació de missatges segons el context i l’ús d’estratègies jeràrquiques Bayesianes són essencials per millorar la qualitat dels temes apresos. En aquesta tesi, estudiem en dos fases el problema d’aprenentatge d’estructures semàntiques i predictives en documents de text: En la primera fase, Part I, investiguem l’ús de models temàtics amb variables latents per la detecció d’esdeveniments a Twitter. En aquest escenari, l’ús del context per agregar tweets sorgeix de forma natural. Per això, primer estenem un algorisme de clustering per detectar esdeveniments a partir dels temes apresos en els tweets agregats. I seguidament, proposem un nou model de probabilitat que integra el model temàtic i el de clustering per tal que la informació flueixi entre ambdós components. En la segona fase, Part II i Part III, qüestionem l’ús de variables latents locals en models per a text curt sense context. Primer de tot, estudiem com avaluar la capacitat de generalització d’un model amb variables latents com el PFA (Poisson Factor Analysis) a través del càlcul de la likelihood. Atès que aquest càlcul és computacionalment intractable, proposem diferents mètodes d estimació. Amb el mètode més acurat, comparem la generalització de models chordals sense variables latents amb la del models PFA, tant en text curt com estàndard. En resum, demostrem que integrant clustering i models temàtics, el rendiment de les tècniques de detecció d’esdeveniments a Twitter millora degut a la interacció entre ambdós components. A més a més, desenvolupem diferents mètodes d’estimació per avaluar la capacitat generalizadora dels models PFA i validem empíricament la seva exactitud en diverses col·leccions de text. Finalment, mostrem que podem aprendre models chordals sense variables latents en text a través de Chordalysis i que aquests models poden ser una bona alternativa als models temàtics clàssics, especialment en text curt.Postprint (published version

    Generalized topographic block model

    No full text
    Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases. The inference of the parameters is derived from the block expectation–maximization algorithm with a Newton–Raphson procedure at the maximization step. Empirical experiments with textual data validate the interest of our generalized model

    Learning latent variable models : efficient algorithms and applications

    Get PDF
    Learning latent variable models is a fundamental machine learning problem, and the models belonging to this class - which include topic models, hidden Markov models, mixture models and many others - have a variety of real-world applications, like text mining, clustering and time series analysis. For many practitioners, the decade-old Expectation Maximization method (EM) is still the tool of choice, despite its known proneness to local minima and long running times. To overcome these issues, algorithms based on the spectral method of moments have been recently proposed. These techniques recover the parameters of a latent variable model by solving - typically via tensor decomposition - a system of non-linear equations relating the low-order moments of the observable data with the parameters of the model to be learned. Moment-based algorithms are in general faster than EM as they require a single pass over the data, and have provable guarantees of learning accuracy in polynomial time. Nevertheless, methods of moments have room for improvements: their ability to deal with real-world data is often limited by a lack of robustness to input perturbations. Also, almost no theory studies their behavior when some of the model assumptions are violated by the input data. Extending the theory of methods of moments to learn latent variable models and providing meaningful applications to real-world contexts is the focus of this thesis. ssuming data to be generated by a certain latent variable model, the standard approach of methods of moments consists of two steps: first, finding the equations that relate the moments of the observable data with the model parameters and then, to solve these equations to retrieve estimators of the parameters of the model. In Part I of this thesis we will focus on both steps, providing and analyzing novel and improved model-specific moments estimators and techniques to solve the equations of the moments. In both the cases we will introduce theoretical results, providing guarantees on the behavior of the proposed methods, and we will perform experimental comparisons with existing algorithms. In Part II, we will analyze the behavior of methods of moments when data violates some of the model assumptions performed by a user. First, we will observe that in this context most of the theoretical infrastructure underlying methods of moments is not valid anymore, and consequently we will develop a theoretical foundation to methods of moments in the misspecified setting, developing efficient methods, guaranteed to provide meaningful results even when some of the model assumptions are violated. During all the thesis, we will apply the developed theoretical results to challenging real-world applications, focusing on two main domains: topic modeling and healthcare analytics. We will extend the existing theory of methods of moments to learn models that are traditionally used to do topic modeling – like the single-topic model and Latent Dirichlet Allocation – providing improved learning techniques and comparing them with existing methods, which we prove to outperform in terms of speed and learning accuracy. Furthermore, we will propose applications of latent variable models to the analysis of electronic healthcare records, which, similarly to text mining, are very likely to become massive datasets; we will propose a method to discover recurrent phenotypes in populations of patients and to cluster them in groups with similar clinical profiles - a task where the efficiency properties of methods of moments will constitute a competitive advantage over traditional approaches.Aprender modelos de variable latente es un problema fundamental de machine learning, y los modelos que pertenecen a esta clase, como topic models, hidden Markov models o mixture models, tienen muchas aplicaciones en el mundo real, por ejemplo text mining, clustering y time series analysis. El método de Expectation Maximization (EM) sigue siendo la herramienta más utilizada, a pesar de su conocida tendencia a producir soluciones subóptimas y sus largos tiempos de ejecución. Para superar estos problemas, se han propuesto recientemente algoritmos basados en el método de los momentos. Estas técnicas aprenden los parámetros de un modelo resolviendo un sistema de ecuaciones no lineales que relacionan los momentos de los datos observables con los parámetros del modelo que se debe aprender. Los métodos de los momentos son en general más rápidos que EM, ya que requieren una sola pasada sobre los datos y tienen garantías de producir estimadores consistentes en tiempo polinomial. A pesar de estas ventajas, los métodos de los momentos todavía tienen margen de mejora: cuando se utilizan con datos reales, los métodos de los momentos se revelan inestables, con una fuerte sensibilidad a las perturbaciones. Además, las garantías de estos métodos son válidas solo si el usuario conoce el modelo probabilístico que genera los datos, y no existe alguna teoría que estudie lo que pasa cuando ese modelo es desconocido o no correctamente especificado. El objetivo de esta tesis es ampliar la teoría de métodos de los momentos, estudiar sus aplicaciones para aprender modelos de variable latente, extendiendo la teoría actual. Además se proporcionarán aplicaciones significativas a contextos reales. Típicamente, el método de los momentos consta de de dos partes: primero, encontrar las ecuaciones que relacionan los momentos de los datos observables con los parámetros del modelo y segundo, resolver estas ecuaciones para recuperar estimadores consistentes de los parámetros del modelo. En la Parte I de esta tesis, nos centraremos en ambos pasos, proporcionando y analizando nuevos estimadores de momentos para una variedad de modelos, y técnicas para resolver las ecuaciones de los momentos. En ambos casos, introduciremos resultados teóricos, proporcionaremos garantías sobre el comportamiento de los métodos propuestos y realizaremos comparaciones experimentales con algoritmos existentes. En la Parte II, analizaremos el comportamiento de los métodos de los momentos cuando algunas de las hipótesis de modelo se encuentran violadas por los datos. Como primera cosa, observaremos que en este contexto, la mayoría de la infraestructura teórica que subyace a estos métodos pierde de validez y, por lo tanto, desarrollaremos una base teórica nueva, presentando métodos eficientes, garantizados para proporcionar resultados razonables incluso cuando algunas de las hipótesis del modelo son violadas. En toda la tesis aplicamos los resultados obtenidos a nivel teórico a aplicaciones del mundo real, centrándonos en dos áreas principales: topic modeling y healthcare analytics. Ampliamos la teoría existente de los métodos de momentos para aprender los modelos que se usan tradicionalmente en el ámbito de topic modeling, como el single-topic model y la Latent Dirichlet Allocation, proporcionando nuevas técnicas de aprendizaje y comparándolas con los métodos existentes. Además, estudiamos aplicaciones de modelos de variable latente en el análisis de datos del ámbito healthcare; proponemos un método para descubrir fenotipos recurrentes en poblaciones de pacientes y agruparlos en clusters con perfiles clínicos similares, una tarea donde las propiedades de eficiencia de los métodos de los momentos constituyen una ventaja competitiva sobre los métodos tradicionales.Postprint (published version

    kk-MLE: A fast algorithm for learning statistical mixture models

    Full text link
    We describe kk-MLE, a fast and efficient local search algorithm for learning finite statistical mixtures of exponential families such as Gaussian mixture models. Mixture models are traditionally learned using the expectation-maximization (EM) soft clustering technique that monotonically increases the incomplete (expected complete) likelihood. Given prescribed mixture weights, the hard clustering kk-MLE algorithm iteratively assigns data to the most likely weighted component and update the component models using Maximum Likelihood Estimators (MLEs). Using the duality between exponential families and Bregman divergences, we prove that the local convergence of the complete likelihood of kk-MLE follows directly from the convergence of a dual additively weighted Bregman hard clustering. The inner loop of kk-MLE can be implemented using any kk-means heuristic like the celebrated Lloyd's batched or Hartigan's greedy swap updates. We then show how to update the mixture weights by minimizing a cross-entropy criterion that implies to update weights by taking the relative proportion of cluster points, and reiterate the mixture parameter update and mixture weight update processes until convergence. Hard EM is interpreted as a special case of kk-MLE when both the component update and the weight update are performed successively in the inner loop. To initialize kk-MLE, we propose kk-MLE++, a careful initialization of kk-MLE guaranteeing probabilistically a global bound on the best possible complete likelihood.Comment: 31 pages, Extend preliminary paper presented at IEEE ICASSP 201
    • …
    corecore