28,224 research outputs found

    Online Collaborative Editor

    Get PDF
    “Online collaborative editor” is a node.js based browser application that provides real time collaborative editing of files and improves pair programming. Current real time editors fail to provide simultaneous viewing and editing of files within the server and results in a complex version controlling system. Such systems are also vulnerable to deadlocks and race conditions. This project provides a platform for real time collaborative editors, which can support simultaneous editing and viewing of files and handle concurrency problems by using locking mechanism. The experiment results showed that node.js platform provides good performance for collaborative editing

    Who Spoke What? A Latent Variable Framework for the Joint Decoding of Multiple Speakers and their Keywords

    Full text link
    In this paper, we present a latent variable (LV) framework to identify all the speakers and their keywords given a multi-speaker mixture signal. We introduce two separate LVs to denote active speakers and the keywords uttered. The dependency of a spoken keyword on the speaker is modeled through a conditional probability mass function. The distribution of the mixture signal is expressed in terms of the LV mass functions and speaker-specific-keyword models. The proposed framework admits stochastic models, representing the probability density function of the observation vectors given that a particular speaker uttered a specific keyword, as speaker-specific-keyword models. The LV mass functions are estimated in a Maximum Likelihood framework using the Expectation Maximization (EM) algorithm. The active speakers and their keywords are detected as modes of the joint distribution of the two LVs. In mixture signals, containing two speakers uttering the keywords simultaneously, the proposed framework achieves an accuracy of 82% for detecting both the speakers and their respective keywords, using Student's-t mixture models as speaker-specific-keyword models.Comment: 6 pages, 2 figures Submitted to : IEEE Signal Processing Letter

    The Minimized Face of Internal Communication: An Exploration of How Public Relations Agency Websites Frame Internal Communication and its Connection to Social Media

    Get PDF
    Internal communication is increasingly vital to organizational success due to the influence of social media, yet it remains understudied within public relations research. Using a qualitative content analysis of 181 websites, this study examines how leading public relations agency websites frame the value of internal communication and its connection to social media. Findings reveal internal communication is largely missing from the frame. When explicitly referenced, it is mostly framed as synonymous with employee communication as a means for management to communicate to employees, though some portrayals are more robust. Websites frame internal communication’s value as enhancing financial outcomes by improving workplace culture, employee engagement, and workers’ willingness to support management’s preferred organization brand or reputation. Social media are disconnected from internal communication and are mostly framed as tools that require additional employee training to use in order to reach external audiences. A handful of agencies urge organizations to include social media and internal stakeholders within the internal communication function. Recommendations are made for future internal communication research and practice

    Survivability in Time-varying Networks

    Get PDF
    Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their great modeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks under the new framework, we propose two metrics that are analogous to MaxFlow and MinCut in static networks. We show that some fundamental survivability-related results such as Menger's Theorem only conditionally hold in time-varying networks. Then we analyze the complexity of computing the proposed metrics and develop several approximation algorithms. Finally, we conduct trace-driven simulations to demonstrate the application of our survivability framework to the robust design of a real-world bus communication network
    • …
    corecore