166 research outputs found

    Optimum Median Filter Based on Crow Optimization Algorithm

    Get PDF
    يُقترح مرشح متوسط ​​جديد يعتمد على خوارزميات تحسين الغراب (OMF) لتقليل ضوضاء الملح والفلفل العشوائية وتحسين جودة الصور ذات اللون الرمادي والملونة . الفكرة الرئيسية لهذا النهج هي أن أولاً ، تقوم خوارزمية تحسين الأداء بالكشف عن وحدات البكسل الخاصة بالضوضاء ، واستبدالها بقيمة وسيطة مثالية تبعًا لدالة الأداء. أخيرًا ، تم استخدام نسبة القياس القصوى لنسبة الإشارة إلى الضوضاء (PSNR) ، والتشابه الهيكلي والخطأ المربع المطلق والخطأ التربيعي المتوسط ​​لاختبار أداء المرشحات المقترحة (المرشح الوسيط الأصلي والمحسّن) المستخدمة في الكشف عن الضوضاء وإزالتها من الصور. يحقق المحاكاة استنادًا إلى MATLAB R2019b والنتائج الحالية التي تفيد بأن المرشح المتوسط ​​المحسّن مع خوارزمية تحسين الغراب أكثر فعالية من خوارزمية المرشح المتوسط ​​الأصلية ومرشحات لطرق حديثة ؛ أنها تبين أن العملية المقترحة قوية للحد من مشكلة الخطأ وإزالة الضوضاء بسبب مرشح عامل التصفية المتوسط ​​؛ ستظهر النتائج عن طريق تقليل الخطأ التربيعي المتوسط ​​إلى أدنى أو أقل من (1.5) ، والخطأ المطلق للتساوي (0.22) ,والتشابه الهيكلي اكثر من ( 95%) والحصول على PSNR أكثر من 45dB).) وبنسبة تحسين ( 25%) .          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the results present that the improved median filter with crow optimization algorithm is more effective than the original median filter algorithm and some recently methods; they show that the suggested process is robust to reduce the error problem and remove noise because of a candidate of the median filter; the results will show by the minimized mean square error to equal or less than (1.38), absolute error to equal or less than (0.22) ,Structural Similarity (SSIM) to equal (0.9856) and getting PSNR more than (46 dB). Thus, the percentage of improvement in work is (25%)

    Decision-Based Marginal Total Variation Diffusion for Impulsive Noise Removal in Color Images

    Get PDF
    Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation L1 method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed in this paper that overcomes this limitation that is based on the following facts: (i) each channel in a color image is contaminated independently, and contaminative components are independent and identically distributed; (ii) in a natural image the gradients of different components of a pixel are similar to one another. This method divides components into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted, noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness

    Flight Mechanics/Estimation Theory Symposium, 1990

    Get PDF
    This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

    Get PDF
    The ANGEL project (Aerial Network Guided Electronic Lookout) takes a systems engineering approach to the design, development, testing and implementation of a quadrotor unmanned aerial vehicle. Many current research endeavors into the field of quadrotors for use as unmanned vehicles do not utilize the broad systems approach to design and implementation. These other projects use pre-fabricated quadrotor platforms and a series of external sensors in a mock environment that is unfeasible for real world use. The ANGEL system was designed specifically for use in a combat theater where robustness and ease of control are paramount. A complete simulation model of the ANGEL system dynamics was developed and used to tune a custom controller in MATLAB and Simulink®. This controller was then implemented in hardware and paired with the necessary subsystems to complete the ANGEL platform. Preliminary tests show successful operation of the craft, although more development is required before it is deployed in field. A custom high-level controller for the craft was written with the intention that troops should be able to send commands to the platform without having a dedicated pilot. A second craft that exhibits detachable limbs for greatly enhanced transportation efficiency is also in development

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Quaternion-Valued Adaptive Signal Processing and Its Applications to Adaptive Beamforming and Wind Profile Prediction

    Get PDF
    Quaternion-valued signal processing has received more and more attentions in the past ten years due to the increasing need to process three or four-dimensional signals, such as colour images, vector-sensor arrays, three-phase power systems, dual-polarisation based wireless communica- tion systems, and wind profile prediction. One key operation involved in the derivation of all kinds of adaptive signal processing algorithms is the gradient operator. Although there are some derivations of this operator in literature with different level of details in the quaternion domain, it is still not fully clear how this operator can be derived in the most general case and how it can be applied to various signal processing problems. In this study, we will give a detailed derivation of the quaternion-valued gradient operator with associated properties and then apply it to different areas. In particular, it will be employed to derive the quaternion-valued LMS (QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays, and another one is its application to wind profile prediction in combination with the classic computational fluid dynamics (CFD) approach. For the adaptive beamforming problem for vector sensor arrays, we consider the crossed- dipole array and the problem of how to reduce the number of sensors involved in the adap- tive beamforming process, so that reduced system complexity and energy consumption can be achieved, whereas an acceptable performance can still be maintained, which is particularly use- ful for large array systems. The quaternion-valued steering vector model for crossed-dipole arrays will be employed, and a reweighted zero attracting (RZA) QLMS algorithm is then pro- posed by introducing a RZA term to the cost function of the original QLMS algorithm. The RZA term aims to have a closer approximation to the l0 norm so that the number of non-zero valued coefficients can be reduced more effectively in the adaptive beamforming process. For wind profile prediction, it can be considered as a signal processing problem and we can solve it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,wind flow analysis is also a classical problem in the CFD field, which employs various simulation methods and models to calculate the speed of wind flow at different time. It is accurate but time-consuming with high computational cost. To tackle the problem, a combined approach based on synergies between the statistical signal processing approach and the CFD approach is proposed. There are different ways of combining the signal processing approach and the CFD approach to obtain a more effective and efficient method for wind profile prediction. In the combined method, the signal processing part employs the QLMS algorithm, while for the CFD part, large eddy simulation (LES) based on the Smagorinsky subgrid-scale (SGS) model will be employed so that more efficient wind profile prediction can be achieved

    1999 Flight Mechanics Symposium

    Get PDF
    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers
    corecore