543 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

    Full text link
    Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network which explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by time-frequency Transformers along both time and frequency dimensions. The encoder aims to encode time-frequency representations derived from the input distorted magnitude and phase spectra. The decoder comprises dual-stream magnitude and phase decoders, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude estimation architecture and a phase parallel estimation architecture, respectively. To train the MP-SENet model effectively, we define multi-level loss functions, including mean square error and perceptual metric loss of magnitude spectra, anti-wrapping loss of phase spectra, as well as mean square error and consistency loss of short-time complex spectra. Experimental results demonstrate that our proposed MP-SENet excels in high-quality speech enhancement across multiple tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it successfully avoids the bidirectional compensation effect between the magnitude and phase, leading to a better harmonic restoration. Notably, for the speech denoising task, the MP-SENet yields a state-of-the-art performance with a PESQ of 3.60 on the public VoiceBank+DEMAND dataset.Comment: Submmited to IEEE Transactions on Audio, Speech and Language Processin

    Improved Algorithm for Pathological and Normal Voices Identification

    Get PDF
    There are a lot of papers on automatic classification between normal and pathological voices, but they have the lack in the degree of severity estimation of the identified voice disorders. Building a model of pathological and normal voices identification, that can also evaluate the degree of severity of the identified voice disorders among students. In the present work, we present an automatic classifier using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural networks. The training set was done by classifying students’ recorded voices based on threshold from the literature. We retrieve the pitch, jitter, shimmer and harmonic-to-noise ratio values of the speech utterance /a/, which constitute the input vector of the neural network. The degree of severity is estimated to evaluate how the parameters are far from the standard values based on the percent of normal and pathological values. In this work, the base data used for testing the proposed algorithm of the neural network is formed by healthy and pathological voices from German database of voice disorders. The performance of the proposed algorithm is evaluated in a term of the accuracy (97.9%), sensitivity (1.6%), and specificity (95.1%). The classification rate is 90% for normal class and 95% for pathological class

    Generating intelligible audio speech from visual speech

    Get PDF
    This work is concerned with generating intelligible audio speech from a video of a person talking. Regression and classification methods are proposed first to estimate static spectral envelope features from active appearance model (AAM) visual features. Two further methods are then developed to incorporate temporal information into the prediction - a feature-level method using multiple frames and a model-level method based on recurrent neural networks. Speech excitation information is not available from the visual signal, so methods to artificially generate aperiodicity and fundamental frequency are developed. These are combined within the STRAIGHT vocoder to produce a speech signal. The various systems are optimised through objective tests before applying subjective intelligibility tests that determine a word accuracy of 85% from a set of human listeners on the GRID audio-visual speech database. This compares favourably with a previous regression-based system that serves as a baseline which achieved a word accuracy of 33%

    Spatial features of reverberant speech: estimation and application to recognition and diarization

    Get PDF
    Distant talking scenarios, such as hands-free calling or teleconference meetings, are essential for natural and comfortable human-machine interaction and they are being increasingly used in multiple contexts. The acquired speech signal in such scenarios is reverberant and affected by additive noise. This signal distortion degrades the performance of speech recognition and diarization systems creating troublesome human-machine interactions.This thesis proposes a method to non-intrusively estimate room acoustic parameters, paying special attention to a room acoustic parameter highly correlated with speech recognition degradation: clarity index. In addition, a method to provide information regarding the estimation accuracy is proposed. An analysis of the phoneme recognition performance for multiple reverberant environments is presented, from which a confusability metric for each phoneme is derived. This confusability metric is then employed to improve reverberant speech recognition performance. Additionally, room acoustic parameters can as well be used in speech recognition to provide robustness against reverberation. A method to exploit clarity index estimates in order to perform reverberant speech recognition is introduced. Finally, room acoustic parameters can also be used to diarize reverberant speech. A room acoustic parameter is proposed to be used as an additional source of information for single-channel diarization purposes in reverberant environments. In multi-channel environments, the time delay of arrival is a feature commonly used to diarize the input speech, however the computation of this feature is affected by reverberation. A method is presented to model the time delay of arrival in a robust manner so that speaker diarization is more accurately performed.Open Acces

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Deep learning for speech enhancement : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    Speech enhancement, aiming at improving the intelligibility and overall perceptual quality of a contaminated speech signal, is an effective way to improve speech communications. In this thesis, we propose three novel deep learning methods to improve speech enhancement performance. Firstly, we propose an adversarial latent representation learning for latent space exploration of generative adversarial network based speech enhancement. Based on adversarial feature learning, this method employs an extra encoder to learn an inverse mapping from the generated data distribution to the latent space. The encoder establishes an inner connection with the generator and contributes to latent information learning. Secondly, we propose an adversarial multi-task learning with inverse mappings method for effective speech representation. This speech enhancement method focuses on enhancing the generator's capability of speech information capture and representation learning. To implement this method, two extra networks are developed to learn the inverse mappings from the generated distribution to the input data domains. Thirdly, we propose a self-supervised learning based phone-fortified method to improve specific speech characteristics learning for speech enhancement. This method explicitly imports phonetic characteristics into a deep complex convolutional network via a contrastive predictive coding model pre-trained with self-supervised learning. The experimental results demonstrate that the proposed methods outperform previous speech enhancement methods and achieve state-of-the-art performance in terms of speech intelligibility and overall perceptual quality

    Design of reservoir computing systems for the recognition of noise corrupted speech and handwriting

    Get PDF
    corecore