14,235 research outputs found

    A subdivision-based implementation of non-uniform local refinement with THB-splines

    Get PDF
    Paper accepted for 15th IMA International Conference on Mathematics on Surfaces, 2017. Abstract: Local refinement of spline basis functions is an important process for spline approximation and local feature modelling in computer aided design (CAD). This paper develops an efficient local refinement method for non-uniform and general degree THB-splines(Truncated hierarchical B-splines). A non-uniform subdivision algorithm is improved to efficiently subdivide a single non-uniform B-spline basis function. The subdivision scheme is then applied to locally hierarchically refine non-uniform B-spline basis functions. The refined basis functions are non-uniform and satisfy the properties of linear independence, partition of unity and are locally supported. The refined basis functions are suitable for spline approximation and numerical analysis. The implementation makes it possible for hierarchical approximation to use the same non-uniform B-spline basis functions as existing modelling tools have used. The improved subdivision algorithm is faster than classic knot insertion. The non-uniform THB-spline approximation is shown to be more accurate than uniform low degree hierarchical local refinement when applied to two classical approximation problems

    Component Selection in the Additive Regression Model

    Full text link
    Similar to variable selection in the linear regression model, selecting significant components in the popular additive regression model is of great interest. However, such components are unknown smooth functions of independent variables, which are unobservable. As such, some approximation is needed. In this paper, we suggest a combination of penalized regression spline approximation and group variable selection, called the lasso-type spline method (LSM), to handle this component selection problem with a diverging number of strongly correlated variables in each group. It is shown that the proposed method can select significant components and estimate nonparametric additive function components simultaneously with an optimal convergence rate simultaneously. To make the LSM stable in computation and able to adapt its estimators to the level of smoothness of the component functions, weighted power spline bases and projected weighted power spline bases are proposed. Their performance is examined by simulation studies across two set-ups with independent predictors and correlated predictors, respectively, and appears superior to the performance of competing methods. The proposed method is extended to a partial linear regression model analysis with real data, and gives reliable results

    C2 piecewise cubic quasi-interpolants on a 6-direction mesh

    Get PDF
    We study two kinds of quasi-interpolants (abbr. QI) in the space of C2 piecewise cubics in the plane, or in a rectangular domain, endowed with the highly symmetric triangulation generated by a uniform 6-direction mesh. It has been proved recently that this space is generated by the integer translates of two multi-box splines. One kind of QIs is of differential type and the other of discrete type. As those QIs are exact on the space of cubic polynomials, their approximation order is 4 for sufficiently smooth functions. In addition, they exhibit nice superconvergent properties at some specific points. Moreover, the infinite norms of the discrete QIs being small, they give excellent approximations of a smooth function and of its first order partial derivatives. The approximation properties of the QIs are illustrated by numerical examples

    Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error

    Full text link
    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge--Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the pp-order numerical algorithm goes to zero at a rate faster than n1/(p4)n^{-1/(p\wedge4)}, the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.Comment: Published in at http://dx.doi.org/10.1214/09-AOS784 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

    Full text link
    A new modified Galerkin / Finite Element Method is proposed for the numerical solution of the fully nonlinear shallow water wave equations. The new numerical method allows the use of low-order Lagrange finite element spaces, despite the fact that the system contains third order spatial partial derivatives for the depth averaged velocity of the fluid. After studying the efficacy and the conservation properties of the new numerical method, we proceed with the validation of the new numerical model and boundary conditions by comparing the numerical solutions with laboratory experiments and with available theoretical asymptotic results
    corecore