2,166 research outputs found

    The quantum query complexity of the hidden subgroup problem is polynomial

    Full text link
    We present a quantum algorithm which identifies with certainty a hidden subgroup of an arbitrary finite group G in only a polynomial (in log |G|) number of calls to the oracle. This is exponentially better than the best classical algorithm. However our quantum algorithm requires exponential time, as in the classical case. Our algorithm utilizes a new technique for constructing error-free algorithms for non-decision problems on quantum computers.Comment: To appear in Information Processing Letters (IPL

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular values of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and Chuang. The proposed quantum circuits have a very simple structure, often give rise to optimal algorithms and have appealing constant factors, while usually only use a constant number of ancilla qubits. We show that singular value transformation leads to novel algorithms. We give an efficient solution to a certain "non-commutative" measurement problem and propose a new method for singular value estimation. We also show how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show how to efficiently implement principal component regression. "Singular value transformation" is conceptually simple and efficient, and leads to a unified framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate this by showing how it generalizes a number of prominent quantum algorithms, including: optimal Hamiltonian simulation, implementing the Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust oblivious amplitude amplification, fast QMA amplification, fast quantum OR lemma, certain quantum walk results and several quantum machine learning algorithms. In order to exploit the strengths of the presented method it is useful to know its limitations too, therefore we also prove a lower bound on the efficiency of singular value transformation, which often gives optimal bounds.Comment: 67 pages, 1 figur

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change
    corecore