152 research outputs found

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives

    Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations

    Get PDF
    This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Microwave satellite remote sensing for a sustainable sea

    Get PDF
    The oceans cover roughly 2/3 of the Earth’s surface and are a fundamental ecosystem regulating climate, weather and representing a huge reservoir of biodiversity and natural resources. The preservation of the oceans is therefore not only relevant on an environmental perspective but also on an economical one. A sustainable approach is requested that cannot be simply achieved by improving technologies but calls for a shared new vision of common goods.Within such a complex and holistic problem, the role of satellite microwave remote sensing to observe marine ecosystem and to assist a sustainable development of human activities must be considered. In such a view the paper is meant. Accordingly, the key microwave sensor technologies are reviewed paying particular emphasis on those applications that can provide effective support to pursue some of the UN Sustainable Development Goals. Three meaningful sectors are showcased:oil and gas, where microwave sensors can provide continuous fine-resolution monitoring of critical infrastructures; renewable energy, where microwave satellite remote sensing allows supporting the management of offshore wind farms during both feasibility and operational stages; plastic pollution, where microwave technologies that exploit signals of opportunity offer large-scale monitoring capability to provide marine litter maps of the oceans

    Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture

    Get PDF
    A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X
    • …
    corecore