14,920 research outputs found

    Edge of Chaos and Genesis of Turbulence

    Full text link
    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable travelling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space

    Identification of shallow sea models

    Get PDF
    In this paper we consider a parameter estimation procedure for shallow sea models. The method is formulated as a minimization problem. An adjoint model is used to calculate the gradient of the criterion which is to be minimized. In order to obtain a robust estimation method, the uncertainty of the open boundary conditions can be taken into acoount by allowing random noise inputs to act on the open boundaries. This method avoids the possibility that boundary errors are interpreted by the estimation procedure as parameter fluctuations. We apply the parameter estimation method to identify a shallow sea model of the entire European continental shelf. First, a space-varying bottom friction coefficient is estimated simultaneously with the depth. The second application is the estimation of the parameterization of the wind stress coefficient as a function of the wind velocity. Finally, an uncertain open boundary condition is included. It is shown that in this case the parameter estimation procedure does become more robust and produces more realistic estimates. Furthermore, an estimate of the open boundary conditions is also obtained

    Consensus-based control for a network of diffusion PDEs with boundary local interaction

    Full text link
    In this paper the problem of driving the state of a network of identical agents, modeled by boundary-controlled heat equations, towards a common steady-state profile is addressed. Decentralized consensus protocols are proposed to address two distinct problems. The first problem is that of steering the states of all agents towards the same constant steady-state profile which corresponds to the spatial average of the agents initial condition. A linear local interaction rule addressing this requirement is given. The second problem deals with the case where the controlled boundaries of the agents dynamics are corrupted by additive persistent disturbances. To achieve synchronization between agents, while completely rejecting the effect of the boundary disturbances, a nonlinear sliding-mode based consensus protocol is proposed. Performance of the proposed local interaction rules are analyzed by applying a Lyapunov-based approach. Simulation results are presented to support the effectiveness of the proposed algorithms

    A boundary integral formalism for stochastic ray tracing in billiards

    Get PDF
    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed
    • 

    corecore