43,425 research outputs found

    MIDAS: Detection of Non-technical Losses in Electrical Consumption Using Neural Networks and Statistical Techniques

    Get PDF
    Datamining has become increasingly common in both the public and private sectors. A non-technical loss is defined as any consumed energy or service which is not billed because of measurement equipment failure or ill-intentioned and fraudulent manipulation of said equipment. The detection of non-technical losses (which includes fraud detection) is a field where datamining has been applied successfully in recent times. However, the research in electrical companies is still limited, making it quite a new research topic. This paper describes a prototype for the detection of non-technical losses by means of two datamining techniques: neural networks and statistical studies. The methodologies developed were applied to two customer sets in Seville (Spain): a little town in the south (pop: 47,000) and hostelry sector. The results obtained were promising since new non-technical losses (verified by means of in-situ inspections) were detected through both methodologies with a high success rate

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Trajectory Clustering and an Application to Airspace Monitoring

    Get PDF
    This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Nominal trajectories are determined and learned using data driven methods. Standard procedures are used by air traffic controllers (ATC) to guide aircraft, ensure the safety of the airspace, and to maximize the runway occupancy. Even though standard procedures are used by ATC, the control of the aircraft remains with the pilots, leading to a large variability in the flight patterns observed. Two methods to identify typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as standard. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is "healthy" when all aircraft are flying according to the nominal procedures. A measure of complexity is introduced, measuring the conformance of current flight to nominal flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure a safe separation between aircraft.Comment: 15 pages, 20 figure
    corecore