147,607 research outputs found

    MAMUD : contribution of HR satellite imagery to a better monitoring, modeling and understanding of urban dynamics

    Get PDF
    In this treatise the discussion of a methodology and results of semi-automatic city DSM extrac-tion from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, partly because of the steep changes in elevation caused by buildings and urban features. To make DSM extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research will concentrate, in first phase on the development of methods to optimize the extraction of photogrammetric products from the bundled Ikonos triplet. Optimal methods need to be found to improve the radiometry and geometry of the imagery, to improve the semi-automatically derivation of DSM’s and to improve the postprocessing of the products. Secondly we will also investigate the possibilities of creating stereo models out of images from the same sensor taken on a different date, e.g. one image of the stereo pair combined with the third image. Finally the photogrammetric products derived from the Ikonos stereo pair as well as the products created out of the triplet and the constructed stereo models will be investigated by comparison with a 3D reference. This evaluation should show the increase of accuracy when multi-imagery is used instead of stereo pairs

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    Vehicle pose estimation using G-Net: multi-class localization and depth estimation

    Get PDF
    In this paper we present a new network architecture, called G-Net, for 3D pose estimation on RGB images which is trained in a weakly supervised manner. We introduce a two step pipeline based on region-based Convolutional neural networks (CNNs) for feature localization, bounding box refinement based on non-maximum-suppression and depth estimation. The G-Net is able to estimate the depth from single monocular images with a self-tuned loss function. The combination of this predicted depth and the presented two-step localization allows the extraction of the 3D pose of the object. We show in experiments that our method achieves good results compared to other state-of-the-art approaches which are trained in a fully supervised manner.Peer ReviewedPostprint (author's final draft

    leave a trace - A People Tracking System Meets Anomaly Detection

    Full text link
    Video surveillance always had a negative connotation, among others because of the loss of privacy and because it may not automatically increase public safety. If it was able to detect atypical (i.e. dangerous) situations in real time, autonomously and anonymously, this could change. A prerequisite for this is a reliable automatic detection of possibly dangerous situations from video data. This is done classically by object extraction and tracking. From the derived trajectories, we then want to determine dangerous situations by detecting atypical trajectories. However, due to ethical considerations it is better to develop such a system on data without people being threatened or even harmed, plus with having them know that there is such a tracking system installed. Another important point is that these situations do not occur very often in real, public CCTV areas and may be captured properly even less. In the artistic project leave a trace the tracked objects, people in an atrium of a institutional building, become actor and thus part of the installation. Visualisation in real-time allows interaction by these actors, which in turn creates many atypical interaction situations on which we can develop our situation detection. The data set has evolved over three years and hence, is huge. In this article we describe the tracking system and several approaches for the detection of atypical trajectories

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/
    • …
    corecore