173 research outputs found

    Domination Cover Pebbling: Structural Results

    Full text link
    This paper continues the results of "Domination Cover Pebbling: Graph Families." An almost sharp bound for the domination cover pebbling (DCP) number for graphs G with specified diameter has been computed. For graphs of diameter two, a bound for the ratio between the cover pebbling number of G and the DCP number of G has been computed. A variant of domination cover pebbling, called subversion DCP is introducted, and preliminary results are discussed.Comment: 15 page

    Two-Player Graph Pebbling

    Get PDF
    Given a graph G with pebbles on the vertices, we define a pebbling move as removing two pebbles from a vertex u, placing one pebble on a neighbor v, and discarding the other pebble, like a toll. The pebbling number n(G) is the least number of pebbles needed so that every arrangement of n(G) pebbles can place a pebble on any vertex through a sequence of pebbling moves. We introduce a new variation on graph pebbling called two-player pebbling. In this, players called the mover and the defender alternate moves, with the stipulation that the defender cannot reverse the previous move. The mover wins only if they can place a pebble on a specified vertex and the defender wins if the mover cannot. We define n(G), analogously, as the minimum number of pebbles such that given every configuration of the n(G) pebbles and every specified vertex r, the mover has a winning strategy. First, we will investigate upper bounds for n(G) on various classes of graphs and find a certain structure for which the defender has a winning strategy, no matter how many pebbles are in a configuration. Then, we characterize winning configurations for both players on a special class of diameter 2 graphs. Finally, we show winning configurations for the mover on paths using a recursive argument

    Extensions of Graph Pebbling

    Get PDF
    My thesis will consist of extensions to results that I proved at the 2004 East Tennessee State REU. Most of these results have to do with graph pebbling and various probabilistic extensions. Specifically, in Chapter 2 we compute the cover pebbling number for complete multipartite graphs and prove upper bounds for cover pebbling numbers for graphs of a specified diameter and order. We also prove that the cover pebbling decision problem is NP complete. In Chapters 3 and 4 we examine domination cover pebbling. In Chapter 5, we obtain structural and probabilistic results for deep graphs, and in Chapter 6 we compute cover pebbling probability thresholds for the complete graph
    • …
    corecore