2,648 research outputs found

    Two-message Key Exchange with Strong Security from Ideal Lattices

    Get PDF
    In this paper, we first revisit the generic two-message key exchange (TMKE) scheme (which will be referred to as KF) introduced by Kurosawa and Furukawa (CT-RSA 2014). This protocol is mainly based on key encapsulation mechanism (KEM) which is assumed to be secure against chosen plaintext attacks (IND-CPA). However, we find out that the security of the KF protocol cannot be reduced to IND-CPA KEM. The concrete KF protocol instantiated from ElGamal KEM is even subject to key compromise impersonation (KCI) attacks. In order to overcome the flaws of the KF scheme, we introduce a new generic TMKE scheme from KEM. Instead, we require that the KEM should be secure against one-time adaptive chosen ciphertext attacks (OT-IND-CCA2). We call this class of KEM as OTKEM. In particular, we propose a new instantiation of OTKEM from Ring Learning with Errors (Ring-LWE) problem in the standard model. This yields a concrete post-quantum TMKE protocol with strong security. The security of our TMKE scheme is shown in the extended Canetti-Krawczyk model with perfect forward secrecy (eCK-PFS)

    Ring Learning With Errors: A crossroads between postquantum cryptography, machine learning and number theory

    Get PDF
    The present survey reports on the state of the art of the different cryptographic functionalities built upon the ring learning with errors problem and its interplay with several classical problems in algebraic number theory. The survey is based to a certain extent on an invited course given by the author at the Basque Center for Applied Mathematics in September 2018.Comment: arXiv admin note: text overlap with arXiv:1508.01375 by other authors/ comment of the author: quotation has been added to Theorem 5.

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Analysis of BCNS and Newhope Key-exchange Protocols

    Get PDF
    Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. Following increasing interest from both companies and government agencies in building quantum computers, a number of works have proposed instantiations of practical post-quantum key-exchange protocols based on hard problems in lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. In this work we present an analysis of Ring-LWE based key-exchange mechanisms and compare two implementations of Ring-LWE based key-exchange protocol: BCNS and NewHope. This is important as NewHope protocol implementation outperforms state-of-the art elliptic curve based Diffie-Hellman key-exchange X25519, thus showing that using quantum safe key-exchange is not only a viable option but also a faster one. Specifically, this thesis compares different reconciliation methods, parameter choices, noise sampling algorithms and performance

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    08491 Abstracts Collection -- Theoretical Foundations of Practical Information Security

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore