4,619 research outputs found

    The Complexity of Mean Flow Time Scheduling Problems with Release Times

    Full text link
    We study the problem of preemptive scheduling n jobs with given release times on m identical parallel machines. The objective is to minimize the average flow time. We show that when all jobs have equal processing times then the problem can be solved in polynomial time using linear programming. Our algorithm can also be applied to the open-shop problem with release times and unit processing times. For the general case (when processing times are arbitrary), we show that the problem is unary NP-hard.Comment: Subsumes and replaces cs.DS/0412094 and "Complexity of mean flow time scheduling problems with release dates" by P.B, S.

    Flow shop scheduling with earliness, tardiness and intermediate inventory holding costs

    Get PDF
    We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding) and intermediate (work-in-process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two di erent, but closely related, Dantzig-Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig-Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two di erent lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near-optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with di erent types of strongly NP-hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near-optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach
    corecore